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a b s t r a c t

Modeling conditional distributions in time series has attracted increasing attention in economics and
finance.Wedevelop a new class of generalized Cramer–vonMises (GCM) specification tests for time series
conditional distributionmodels using a novel approach,which embeds the empirical distribution function
in a spectral framework. Our tests check a large number of lags and are therefore expected to be powerful
against neglected dynamics at higher order lags, which is particularly useful for non-Markovian processes.
Despite using a large number of lags, our tests do not suffer much from loss of a large number of degrees
of freedom, because our approach naturally downweights higher order lags, which is consistent with the
stylized fact that economic or financial markets are more affected by recent past events than by remote
past events. Unlike the existing methods in the literature, the proposed GCM tests cover both univariate
and multivariate conditional distribution models in a unified framework. They exploit the information
in the joint conditional distribution of underlying economic processes. Moreover, a class of easy-to-
interpret diagnostic procedures are supplemented to gauge possible sources of model misspecifications.
Distinct from conventional CMandKolmogorov–Smirnov (KS) tests, which are also based on the empirical
distribution function, our GCM test statistics follow a convenient asymptotic N(0, 1) distribution and
enjoy the appealing ‘‘nuisance parameter free’’ property that parameter estimation uncertainty has no
impact on the asymptotic distribution of the test statistics. Simulation studies show that the tests provide
reliable inference for sample sizes often encountered in economics and finance.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The modeling of conditional distributions in time series has
been advancing rapidly, with a wide range of applications in
economics and finance (e.g. Granger, 1999; Corradi and Swanson,
2006b). Enormous empirical evidences document that economic
and financial variables are typically nonlinear and nonnormally
distributed, and have asymmetric comovements.1 Consequently,
one has to go beyond the conditional mean and conditional
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∗∗ Corresponding author at: Department of Economics, Cornell University, Ithaca,
NY 14850, United States.

E-mail addresses: bchen8@mail.rochester.edu (B. Chen), yh20@cornell.edu
(Y. Hong).
1 Empirical evidences against normality can be dated back to Mills (1927) and

continue through today, see, e.g., Ang and Chen (2002), Bollerslev (1986), Longin
and Solnik (2001).

variance to obtain a complete picture for the dynamics of time
series of interest. The conditional distribution characterizes the
full dynamics of economic variables. As pointed out by Granger
(2003), the knowledge of the conditional distribution is essential
in performing various economic policy evaluations, financial
forecasts, derivative pricing and risk management.2

In economics and econometrics, effort has been devoted to
using higher moments and the entire distribution. Rothschild and
Stiglitz’s (1971, 1972) seminal works have demonstrated that the
risk or uncertainty should be characterized by the distribution
function, rather than the first two moments. In particular, the

2 A prominent example is in the option pricing context, where the price is
determined by not just the conditional mean and variance, but functions of
conditional distribution. Another example is to calculate value-at-risk (VaR), where
the key step is to accurately estimate the conditional distribution of asset returns
and the preassumed normal distribution can significantly underestimate the
downward risk.
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ranking of the cumulative distribution function (CDF) by certain
rules always coincides with that of the risk-averter’s preference,3
while the mean–variance analysis is only applicable to the
restricted family of utility functions or distribution functions.
Granger (1999), in a model evaluation context, suggests that
the predictive conditional distribution should be provided, since
forecasts based on conditional means are optimal only for a very
limited class of loss functions.4

In time series analysis, the most popular models are ARMA
models for conditional mean and GARCH models for conditional
variance. However, as Hansen (1994) points out ‘‘there is no reason
to assume, in general, that the only features of the conditional
distribution which depend upon the conditional information are
the mean and variance’’. Although still in an early stage, some
time series models have been developed to study skewness,
kurtosis and even the entire distribution. Hansen (1994) develops
a general model for autoregressive conditional density (ARCD),
which allows for time-varying first four conditional moments via
a generalized skewed t-distribution. Harvey and Siddique (1999)
propose a generalized autoregressive conditional skewness model
(GARCHS) in a conditional non-central t-distribution framework
by explicitly modeling the conditional second and third moments
jointly. Brooks et al. (2005) develop a generalized autoregressive
conditional heteroscedasticity and kurtosis (GARCHK) model via
a central t distribution with time-varying degrees of freedom.
Other examples of distribution models include Engle and Russell’s
(1998, 2005) autoregressive conditional duration (ACD) and
autoregressive conditional multinomial (ACM) models, Bowsher’s
(2007) vector conditional intensitymodel, Hamilton’s (1989, 1990)
Markov regime switching models and Geweke and Amisano’s
(2007) compound Markov mixture models.

In addition to the univariate time series distribution modeling,
the recent literature has documented a rapid growth of multivari-
ate conditional distribution models, due to an increasing need to
capture the joint dynamics of multivariate processes, such as in
macroeconomic control, pricing, hedging and risk management.5
For example, CAPM studies the relationship between individual as-
set returns and the market return, which has motivated the devel-
opment of multivariate GARCHmodels (e.g., Bollerslev et al., 1988,
Engle, 2002b). Among multivariate distribution models, copula-
based models have become increasingly popular in characterizing
the comovement between markets, risk factors and other relevant
variables (e.g., Patton, 2004,Hu, 2006, Lee and Long, 2009). Another
example is the extension of Markov regime switching models to a
multivariate framework (e.g., Clements and Krolzig, 2003, Chauvet
andHamilton, 2006).Markov regime switchingmodels can capture
the asymmetry, nonlinearity and persistence of extreme observa-
tions of time series.

Efficient parameter estimation, optimal distribution forecast,
valid hypothesis testing and economic interpretation all require
correct model specification. The work on testing distributional
assumptions at least dates back to the Kolmogorov–Smirnov
(KS) test. One undesired feature of this test is that it is not
distribution free when parameters are estimated. Andrews (1997)
extends the KS test to conditional distribution models for
independent observations, where a bootstrap procedure is used
to obtain critical values. Meanwhile, Zheng (2000) proposes a
nonparametric test for conditional distribution functions based
on the Kullback–Leibler information criterion and the kernel
estimation of the underlying distributions. Fan et al. (2006) extend
Zheng’s (2000) test to allow for discrete dependent variables

3 A closely related concept is second-order stochastic dominance, which ranks
any pair of distributions with the same mean in terms of comparative risk.
4 See also Christoffersen and Diebold (1997) for more discussion.
5 Geweke and Amisano (2007) argue that ‘‘while univariate models are a first

step, there is an urgent need to move on to multivariate modeling of the time-
varying distribution of asset returns’’.

and for mixed discrete and continuous conditional variables.
However, a limitation of the above tests is that the data must
be independently and identically distributed, therefore ruling out
time series applications especiallywhen the underlying time series
is non-Markovian.

Observing the fact that when a dynamic distribution model is
correctly specified, the probability integral transform of observed
data via the model-implied conditional density is i.i.d. U[0, 1],
Bai (2003) proposes a KS type test with Khmaladze’s (1981)
martingale transformation, whose asymptotic distribution is free
of impact of parameter estimation. However, Bai’s (2003) test only
checks uniformity rather than the joint i.i.d. U[0, 1] hypothesis.
It will have no asymptotic unit power if the transformed data
is uniform but not i.i.d. Moreover, in a multivariate context, the
probability integral transform of data with respect to a model-
implied multivariate conditional density is no longer i.i.d. U[0, 1],
even if the model is correctly specified. Bai and Chen (2008)
evaluate themarginal distribution of both independent and serially
dependent multivariate data by using the probability integral
transform for each individual component. This test is legitimate,
but itmaymiss important information on the joint distribution of a
multivariatemodel. In particular, when applied to each component
of multivariate time series data, Bai and Chen’s (2008) test may
fail to detect misspecification in the joint dynamics. For example,
the test may easily overlook misspecification in the conditional
correlations between individual time series.

Corradi and Swanson (2006a) propose bootstrap conditional
distribution tests in the presence of dynamic misspecifications.
However, they consider a finite dimensional information set and
thus may not have good power against non-Markovian models.
Their tests are designed for univariate time series. When extended
to multivariate time series, their tests are not consistent against
all alternatives to the null. Moreover, their critical values are data
dependent and cannot be tabulated. Bierens and Wang (2012)
propose a weighted integrated conditional moment (ICM) test of
the validity of parametric specifications of conditional distribution
models for stationary time series, extending Bierens’ (1984) test.
Their ICM test is consistent against all stationary alternatives,
but its asymptotic distribution is case dependent and a bootstrap
method has to be applied to obtain critical values, which is
computationally intensive.

In a continuous-time diffusion framework, Ait-Sahalia et al.
(2009) and Li and Tkacz (2006) propose tests by comparing
the model-implied distribution function with its nonparametric
counterpart. Both tests maintain the Markov assumption for
the DGP, and only check one lag dependence, therefore are
not suitable for non-Markovian models like GARCH or MA type
models. Another undesired feature of these tests is that they
have severe size distortion in finite samples and bootstrap must
be used to approximate the distribution of the test statistics.
Bhardwaj et al. (2008) consider a simulation-based test,which is an
extension of Andrews’ (1997) conditional KS test, for multivariate
diffusionmodels. The limit distribution of their test is not nuisance
parameter free and asymptotic critical valuesmust be obtained via
a block bootstrap.

In this paper, we shall propose a new class of generalized
Cramer–von Mises (GCM) tests of the adequacy of univariate and
multivariate conditional distribution models, without requiring
prior knowledge of possible alternatives (including both functional
forms and lag structures). Compared with the existing tests for
conditional distribution models in the literature, our approach has
several main advantages.

First, our GCM tests are constructed using a new approach,
which embeds the empirical distribution function in a spectral
framework. Thus it can detect misspecification in both marginal
distribution and dynamics of a time series. Thanks to the use
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of the empirical distribution function, our approach can detect a
variety of linear and nonlinear functional form misspecifications.
Unlike the time domain approach (e.g., Corradi and Swanson,
2006a), our frequency domain approach can check a growing
number of lags as the sample size increases without suffering
severely from the curse of dimensionality. This is particularly
useful for conditional distribution models in time series since the
conditioning information set may depend on the entire history
of data. Indeed, most time series distribution models in the
literature are non-Markov. Moreover, our approach employs a
kernel function and it naturally discounts higher order lags. This
is expected to enhance power because it is consistent with the
stylized fact that economic and financial variables are usually
more influenced by recent events than by remote past events.
Unlike the traditional CM and KS tests, which also use the
empirical distribution function but have nonstandard distributions
contaminated by parameter estimation uncertainty, our tests have
a convenient null asymptotic N(0, 1) distribution.

Second, by using the conditional distribution of a multivariate
time series vector directly, our tests exploit the information
in the joint conditional dynamics of the time series vector
rather than only in the conditional distribution of individual
components. Thus, they can detect misspecifications in the joint
conditional distribution even if the conditional distribution of each
individual series is correctly specified. Our tests are applicable
to both continuous and discrete distributions. Moreover, because
we impose regularity conditions directly on the conditional
distribution function of a discrete sample, our tests are also
applicable tomultivariate continuous-timemodels with discretely
observed samples. Besides the GCM test, we propose a class of
diagnostic tests. These tests can evaluate how well a time series
conditional distribution model captures various specific aspects of
the joint dynamics, and are easy to interpret.

Third, we do not require a particular estimation method. Any
√
T -consistent parametric estimators can be used. Unlike tests

based on the distributional function, such as the conventional CM
and KS tests, parameter estimation uncertainty does not affect the
asymptotic distribution of our test statistic. One can proceed as if
the true model parameters were known and equal to parameter
estimates. This makes our tests easy to implement. The only inputs
needed to calculate the test statistics are the original data and the
model-implied CDF.

In Section 2, we introduce the framework, state the hypotheses,
and characterize the correct specification of a conditional distri-
bution model that can be either univariate or multivariate. In Sec-
tion 3, we propose an empirical distribution function-based test
embedded a frequency domain approach. We derive the asymp-
totic distribution of the proposed test statistic in Section 4, and
discuss its asymptotic power property in Section 5. In Section 6,
we assess the reliability of the asymptotic theory in finite samples
via simulation. Section 7 concludes. All mathematical proofs are
collected in the Appendix. A GAUSS code to implement our tests is
available from the authors upon request. Throughout,wewill use C
to denote a generic bounded constant, ∥·∥ for the Euclidean norm.

2. Hypotheses of interest

Suppose {Xt} is a d × 1 strictly stationary time series process
with unknown conditional CDF P0(x|It−1), where the dimension
d ≥ 1, and It−1 is the information set available at time t − 1. We
allow but do not requireXt to beMarkov. As a leading example, we
consider a time series model

Xt = µ (It−1, θ)+ h1/2 (It−1, θ) εt , (2.1)

where µ(It−1, θ) is a parametric model for E(Xt |It−1),h (It−1, θ)
is a parametric model for var(Xt |It−1), εt has the conditional
CDF Pε(ε|It−1, θ), and θ ∈ 2 is a finite-dimension parameter. In

time series modeling, It−1 is possibly infinite-dimensional, as in
the case of non-Markovian processes. Given Pε(ε|It−1, θ), it is
straightforward to calculate the conditional CDF of Xt

Px(x|It−1, θ) = Pε


x − µ (It−1, θ)

h1/2 (It−1, θ)

 It−1, θ


.

The setup (2.1) is a general specification that nestsmost popular
time series conditional distribution models in the literature. For
example, suppose we assume that εt has a continuous distribution
with the conditional PDF

pε(ε|It−1, θ) = pε[ε|α(It−1, θ)],

where α(It−1, θ) = [µ(It−1, θ),h (It−1, θ) ,λ(It−1, θ), ν(It−1,
θ)]′ is a low dimensional time-varying function that can effectively
summarize the available information It−1, and λ(·) and ν(·) are
so called time-varying shape parameters, which control serial
dependence in higher order conditional moments. Then we obtain
Hansen’s (1994) univariate ARCD model. Specifically, Hansen
(1994) considers a skewed Student’s t distribution with

pε(ε|ν, λ) =



bc
1 +

1
ν−2

 bε+a
1−λ

2(ν+1)/2 if ε < −
a
b
,

bc
1 +

1
ν−2

 bε+a
1+λ

2(ν+1)/2 if ε ≥ −
a
b
,

(2.2)

where 0 < ν < ∞,−1 < λ < 1, a = 4λc ν−2
ν−1 , b

2
= 1 + 3λ2 −

a2, c =
Γ [(ν+1)/2]

[π(ν−2)]1/2Γ (ν/2)
.

Another example is Harvey and Siddique’s (1999) GARCHS
model. For a univariate GARCHS(1, 1, 1) model, the conditional
varianceht ≡ h(It−1, θ) and conditional skewness St ≡ S(It−1, θ)
are specified as

ht = β0 + β1ht−1 + β2u2
t−1

St = γ0 + γ1St−1 + γ2u3
t−1,

where ut ≡ h1/2
t εt and εt has a conditional noncentral t distribu-

tion with the degrees of freedom νt and the noncentrality param-
eter δt .

A third example is the copula-basedmultivariate GARCHmodel
considered by Lee and Long (2009). They assume thatµ(It−1, θ) =

0,h (It−1, θ) adopts the forms from Engle and Kroner’s (1995)
BEKK model, Engle’s (2002a) dynamic conditional correlation
(DCC) model and Tse and Tsui’s (2002) varying correlation model,
and

εt = Σ
−1/2
t ηt , (2.3)

ηt |It−1 ∼ C (Ft(·),Gt(·);αt) ,

where C(·, ·; ·) is the conditional copula function, such as the
Gumbel copula with C(u, v;α) = exp{−[(− ln u)α + (− ln v)α
]
1/α

}, Ft(·),Gt(·) are marginal CDFs.
In our setup, Xt need not have a continuous distribution. An

example of a conditional discrete distribution is Engle and Russell’s
(2005) ACM–ACD model. They assume Xt = (yt , τt)′, where yt
is the discrete price change and τt is the duration between
transactions. The joint conditional distribution of yt and τt can be
decomposed into the product of the conditional distribution of the
price change and the conditional distribution of the arrival times,
namely,

Px (x|It−1, θ) = Py

y|Iy,t−1, Iτ ,t , θ


Pτ (τ |It−1, θ) ,

where Iy,t−1 = (yt−1, yt−2, . . . , y1) and Iτ ,t−1 = (τt−1, τt−2, . . . ,
τ1). The duration τt is assumed to follow an ACD model and its
conditional density is given as

pτ (τ |It−1, θ) =
1
ψt

exp


−
τt

ψt


,
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where ψt = E(τt |Iτ ,t−1). The price change yt has a multinomial
distribution, namely,

py

y|Iy,t−1, Iτ ,t , θ


=

s
j=1

π
ỹtj
tj ,

where s is the number of states, ỹt takes the jth column of the s× s
identity matrix if the jth state occurs in yt and πj denotes the s× 1
vector of conditional probabilities associated with the states.

We say that the model (2.1) is correctly specified if there exists
some parameter value θ0 ∈ 2 such that

H0 : P(x|It−1, θ0) = P0(x|It−1)

almost surely (a.s.) and for all x and t. (2.4)

Alternatively, if for all θ ∈ 2, we have

HA : P(x|It−1, θ) ≠ P0(x|It−1)

with positive probability measure, (2.5)

then model (2.1) is misspecified.
The empirical distribution function has been used to test cor-

rect specification of a conditional distribution model. Observing
that when d = 1, the probability integral transform Ut(θ0) ≡

Pt(Xt |It−1, θ0) is an i.i.d. uniform[0, 1] random variable, Bai
(2003) compares the empirical distribution function of Ut(θ̂) with
a uniform CDF. Bai (2003) uses Khmaladze’s (1981) martingale
transformation to remove the impact of parameter estimation
uncertainty and his test statistic converges to a standard Brow-
nian motion. An undesired feature of this test is that it only
checks the marginal distribution of Ut and has no power against
the alternatives where the independence property is violated but
the marginal uniformity holds. Moreover, the probability inte-
gral transform is not applicable to the multivariate joint condi-
tional density directly, because when d > 1,Ut(θ0) is no longer
i.i.d. U[0, 1]. Bai and Chen (2008) extend it to the multivari-
ate setup by considering the particular sequence Ut1(θ0) ≡ Pt
(Xt1|It−1, θ0),Ut2(θ0) ≡ Pt(Xt2|Xt1, It−1, θ0), . . . ,Utd(θ0) ≡ Pt
(Xtd|Xt1, . . . , Xtd−1, It−1, θ0). This is legitimate, but it does not
make full use of the information contained in the joint distribu-
tion of Xt . In particular, it may miss important model misspecifi-
cation in the joint dynamics of Xt . For example, consider the DGP
Xt = AXt−1+εt , where {εt} is i.i.d.N(0,Σ) andΣ is a d×d (d > 1)
constant upper-triangular matrix. Suppose one fits the data by a
VAR(1) model with ε̃t ∼ i.i.d. N(0, Σ̃), where Σ̃ is a diagonal ma-
trix. Then this model is misspecified yet their test has no power.

To develop a test for H0, we define a generalizedmodel residual

Zt(x, θ) ≡ 1 (Xt ≤ x)− P (x|It−1, θ) , x ∈ Rd. (2.6)

Then H0 is equivalent to the following martingale difference
sequence (MDS) characterization for Zt(x, θ):

E [Zt(x, θ0)|It−1] = 0 for all x ∈ Rd

and some θ0 ∈ 2, a.s. (2.7)

It is not a trivial task to check (2.7). First, the MDS property in (2.7)
must hold for all x ∈ Rd, not just a finite number of grid points
of x. This is an example of the well-known nuisance parameter
problem encountered in the literature (e.g., Davies, 1977, 1987
and Hansen, 1996). Second, the conditioning information set It−1
in (2.7) has an infinite dimension as t → ∞, so there is a ‘‘curse
of dimensionality’’ difficulty associated with testing the model
specification. Finally, {Zt(x, θ0)} may display serial dependence in
its higher order conditional moments. Any test for (2.7) should be
robust to time-varying conditional heteroskedasticity and higher
order moments of unknown form in {Zt(x, θ0)}.

There has been a large literature on empirical distribution
function-based tests; see, e.g., Hoeffding (1948), Andrews (1997),

Linton and Gozalo (1997), and Hong (1998). However, most
tests are designed for i.i.d. observations. The CDF approach
is particularly appealing in checking conditional distribution
models because the conditional PDF usually has a simple closed
form and the conditional CDF can be obtained via analytic or
numerical integration. Moreover, there is a natural link between
the distribution function and moments, which can be exploited
to construct a class of diagnostic procedures for different specific
aspects of P(x|It−1, θ) in Section 5.

So far we have assumed that all components of Xt are observ-
able. However, there are time series models with unobservable
components in the literature. For example, the state-space models
have been widely used in macroeconomics and finance. The sim-
plest state-space representation is given by the following system
of equations:
Yt = A′Yt−1 + H′ξt + wt ,
ξt = F′ξt−1 + vt ,

(2.8)

where A, F and H are matrices of parameters, wt and vt are vector
white noise, ξt is the possibly unobserved state vector, and Yt
is observable. The system in (2.8) is known as the observation
equation and the state equation respectively (see, e.g., Hamilton,
1994 and DeJong and Dave, 2007). Another example is the
class of stochastic volatility (SV) models for equity returns and
interest rates, see (e.g. Shephard, 2005, Andersen and Lund, 1997
and Gallant et al., 1997). With a latent volatility state variable,
SV models can capture salient properties of volatility such as
randomness and persistence. A first order SV model (Taylor, 1986)
assumes:
St = Vtεt ,

ln V 2
t = γ0 + γ1 ln V 2

t−1 + ut ,
(2.9)

where Vt is the latent volatility and St is the asset return, γ0 and γ1
are both scalar parameters, and εt and ut aremutually independent
innovations.

To test time series models with unobservable components, we
need to modify the MDS characterization (2.7) to make it oper-
ational. For this purpose, we partition Xt = (X′

1,t ,X
′

2,t)
′, where

X1,t ⊂ Rd1 denotes the observable components, X2,t ⊂ Rd2 de-
notes the unobservable components, and d1 + d2 = d. Also, parti-
tion x conformably as x =


x′

1, x
′

2

′. Let
P(x1|I1,t−1, θ) ≡ Eθ[1(X1,t ≤ x1)|I1,t−1]

= Eθ{P[(x′

1, 0
′)′|It−1, θ]|I1,t−1},

where I1,t−1 =

X1,t−1,X1,t−2, . . . ,X1,1


is the information set

on the observables that is available at time t − 1 and the second
equality followsby the lawof iterated expectations. Thenwedefine

Z1,t (x1, θ) ≡ 1

X1,t ≤ x1


− P(x1|I1,t−1, θ).

Under H0, we have

E

Z1,t(x1, θ0)|I1,t−1


= 0

a.s. for all x1 ∈ Rd1 and some θ0 ∈ 2. (2.10)

This provides a basis for constructing operational tests for
time series models with partially observable variables. Although
the model-implied conditional distribution P (x|It−1, θ), where
It−1 = (I1,t−1, I2,t−1), may have a closed-form, the conditional
distribution P(x1|I1,t−1, θ) generally has no closed-form. How-
ever, one can approximate it accurately by using some simulation
techniques. For both state-spacemodels and SVmodels, the condi-
tional distribution P


x|It−1,θ


= P


x|Xt−1,θ


is aMarkov process.

In this case,

Eθ{P[(x′

1, 0
′)′|It−1, θ]|I1,t−1}

=


P[(x′

1, 0
′)′|X1,t−1, x2,t−1, θ]p(x2,t−1|I1,t−1, θ)dx2,t−1,
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where p(x2,t−1|I1,t−1, θ) is the model-implied transition density
of the unobservable X2,t−1 given the observable information
I1,t−1. We could use particle filters to estimate the model-
implied conditional distribution based on observables. The term
‘‘particle’’ was first used by Kitagawa (1996) in this literature
to denote the simulated discrete data with random support.
Particle filters are the class of simulation filters that recursively
approximate the filtering random variable x2,t−1|I1,t−1, θ by
‘‘particles’’ X̂1

2,t−1, X̂
2
2,t−1, . . . , X̂

J
2,t−1 with discrete probability

mass of π1
t−1, π

2
t−1, . . . , π

J
t−1 (see, e.g. Gordon et al., 1993; Pitt and

Shephard, 1999). Hence a continuous variable is approximately
a discrete one with random support. These discrete points are
viewed as samples from p


x2,t−1|I1,t−1, θ


and as J → ∞, the

particles can approximate the conditional density increasingly
well.

The key of this method is to propagate particles {X̂j
2,t−2}

J
j=1 one

step forward to get the new particles {X̂j
2,t−1}

J
j=1. By the Bayes rule,

we have

p

x2,t−1|I1,t−1, θ


=

p

x1,t−1|x2,t−1, I1,t−2, θ


p

x2,t−1|I1,t−2, θ


p

x1,t−1|I1,t−2, θ

 ,

where

p

x2,t−1|I1,t−2, θ


=


p

x2,t−1|x2,t−2, I1,t−2, θ


× p


x2,t−2|I1,t−2, θ


dx2,t−2.

We can approximate p

x2,t−1|I1,t−1, θ


up to some proportional-

ity; namely,

p̂

x2,t−1|Î1,t−1, θ


∝ p̂


x1,t−1|X̂2,t−1, Î1,t−2, θ


×

J
j=1

π
j
t−1p̂


x2,t−1|X̂2,t−2, Î1,t−2, θ


,

where p̂(x1,t−1|X̂2,t−1, Î1,t−2, θ) and
J

j=1 π
j
t−1p̂(x2,t−1|X̂2,t−2,

Î1,t−2, θ) can be viewed as the likelihood and prior respectively.
The secondmethod to approximate p(x2,t−1|I1,t−1, θ) is Gallant

and Tauchen’s (1998) SNP-based reprojection technique, which
can characterize the dynamic response of a partially observed non-
linear system to its past observable history. First, we can generate
simulated samples {X̂1,t−1}

J
t=2 and {X̂2,t−1}

J
t=2 from the conditional

distribution model, where J is a large integer. Then, we project the
simulated data {X̂2,t−1}

J
t=2 onto a Hermite series representation

of the transition density p(x2,t−1|X̂1,t−1,X̂1,t−2, . . . , X̂1,t−L), where
L denotes a truncation lag order. With a suitable choice of L via
some information criteria such as AIC or BIC, we can approximate
p(x2,t−1|Î1,t−1, θ) arbitrarily well. The final step is to evaluate the
estimated density function at the observed data in the conditional
information set. See Gallant and Tauchen (1998) for more discus-
sion. Without loss of generality, we will focus on conditional dis-
tribution models with fully observable variables for the rest of the
paper.

3. Generalized dynamic Cramer–von Mises test

We now propose a new class of GCM tests for the adequacy
of a dynamic conditional distribution model by exploiting the
characterization in (2.7). To check the MDS property of Zt(x, θ),
we take a frequency domain approach in combination with the
empirical distribution function. It can capture both linear and
nonlinear dynamicswhilemaintaining the nice features of spectral
analysis, particularly its appealing property to accommodate all

lags information. In the present context, it can check departures of
correct model specification over many lags in a pairwise manner.
This is not attained by many existing tests in the literature which
only check a fixed lag order. The empirical distribution function is
rather natural in testing conditional distributionmodels.Most time
series conditional distributional models have closed-form PDFs.

In a related context, Hong (1999) considers a generalized
spectral test based on the characteristic function and Hong and Lee
(2005) extend the test to check the specification of conditional-
mean models. Our test is proposed in a unified framework,
where Hong and Lee’s (2005) test corresponds to our Q̂m

1 test
defined in (5.1) with |m| = 1. Moreover, our test is based on the
conditional distribution function, which admits closed form for
many conditional distribution models as shown in Section 2 and
hence is convenient to use here. Last, we replace the q-dependence
assumption (Assumption A.2, Hong and Lee, 2005)with themixing
condition, which is commonly assumed in the testing literature
of time series models (e.g., Ait-Sahalia et al., 2009). Escanciano
and Velasco (2006) propose a test for the MDS property based on
the generalized spectral distribution function. The asymptotic null
distribution of their test depends on the DGP and is nonstandard.
Moreover, it is difficult to account for the estimation uncertainty
of the conditional distribution model with their method.

To introduce our test, we first define a generalized covariance
function

Γj (x, y) = cov

Zt(x, θ), 1


Xt−|j| ≤ y


, x, y ∈ Rd,

where j is a lag or lead number. We also define the Fourier
transform

F (ω, x, y) =
1
2π

∞
j=−∞

Γj (x, y) exp (−ijω) ,

ω ∈ [−π, π ] , x, y ∈ Rd, (3.1)

whereω is the frequency. The function F(ω, x, y)may be called the
distribution function-based generalized spectral density of {Xt}.
It contains the same information on serial dependence of {Xt}

as the generalized covariance function Γj(x, y). An advantage of
frequency domain analysis is that it can capture cyclical patterns
caused by both linear and nonlinear serial dependence. Examples
include volatility spillover, the comovements of tail distribution
clustering between economic variables, and asymmetric spillover
of business cycles cross different sectors or countries. Another
attractive feature of F(ω, x, y) is that it does not require the
existence of any moment condition on Xt due to the use of the
distribution function. This is appealing for time series data with
heavy tail distributions.

Under H0, we have Γj(x, y) = 0 for all x, y ∈ Rd and all j ≠ 0.
Consequently, the generalized spectral density F(ω, x, y) becomes
a ‘‘flat’’ spectrum (i.e., a constant function of frequency ω):

F(ω, x, y) = F0 (ω, x, y)

≡
1
2π
Γ0 (x, y) , ω ∈ [−π, π ] , x, y ∈ Rd. (3.2)

Thus, we can test H0 by checking whether a consistent estimator
for F(ω, x, y) is flat with respect to frequency ω. Any significant
deviation from a flat generalized spectrum is evidence of model
misspecification.

Suppose we have a random sample {Xt}
T
t=1 of size T . Then we

can estimate the generalized covariance Γj (x, y) by its sample
analogue

Γ̂j (x, y) =
1

T − |j|

T
t=|j|+1

Zt(x, θ̂)

1

Xt−|j| ≤ y


− ϕ̂j (y)


,

x, y ∈ Rd, (3.3)
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where θ̂ is a
√
T -consistent estimator for θ0 and ϕ̂j(y) = (T −

|j|)−1T
t=|j|+1 1


Xt−|j| ≤ y


is the empirical distribution function

of Xt .
Then a consistent estimator for F0(ω, x, y) is

F̂0(ω, x, y) =
1
2π
Γ̂0(x, y), ω ∈ [−π, π], x, y ∈ Rd. (3.4)

Consistent estimation for F (ω, x, y) is more challenging. We use a
smoothed kernel estimator

F̂(ω, x, y) =
1
2π

T−1
j=1−T

(1 − |j| /T )1/2k(j/p)Γ̂j(x, y)e−ijω,

ω ∈ [−π, π], x, y ∈ Rd, (3.5)

where p ≡ p(T ) → ∞ is a bandwidth or an effective lag order, and
k : R → [−1, 1] is a kernel function, assigning weights to various
lags. Examples of k(·) include the Bartlett kernel, the Parzen
kernel and the Quadratic-Spectral kernel. In (3.5), the factor (1 −

|j| /T )1/2 is a finite-sample correction. It could be replaced by unity.
Under suitable regularity conditions, F̂(ω, x, y) and F̂0(ω, x, y)
are consistent for F(ω, x, y) and F0(ω, x, y) respectively. These
estimators converge to the same limit under H0 but they generally
converge to different limits under HA, giving the power of the test.

We can construct a test via the L2-norm

L̂2 =
πT
2

 π

−π

 F̂ (ω, x, y)− F̂0 (ω, x, y)
2 dωdW (x) dW (y)

=

T−1
j=1

k2 (j/p) (T − j)


Γ̂ 2
j (x, y) dW (x) dW (y), (3.6)

where the equality follows by Parseval’s identity,W : Rd
→ R+ is

a nondecreasing right-continuous weighting function that weighs
the sets symmetric about the origin equally, and the unspecified
integrals are all taken over the support of W (·). An example of
W (·) is the CDF of N (0, Id), where Id is a d× d identity matrix. The
function W (·) can also be a step function, analogous to the CDF of
a discrete random vector.

Our GCM test statistic for H0 against HA is a standardized
version of (3.6):

Q̂1 =


T−1
j=1

k2(j/p)(T − j)

×


Γ̂ 2
j (x, y)dW (x) dW (y)− Ĉ1


D̂1, (3.7)

where the centering and scaling factors

Ĉ1 =

T−1
j=1

k2(j/p)(T − j)−1
T

t=j+1

×


Z2
t (x, θ̂)dW (x)


ψ̂2

t−j(y)dW (y),

D̂1 = 2
T−2
j=1

T−2
l=1

k2(j/p)k2(l/p)

×


dW (x1)dW (y1) dW (x2)dW (y2)

×


[T − max(j, l)]−1

T
t=max(j,l)+1

Zt(x1, θ̂)

× Zt(x2, θ̂)ψ̂t−j(y1)ψ̂t−l(y2)

2

,

where ψ̂t(y) = 1(Xt ≤ y)−ϕ̂(y), and ϕ̂(y) = T−1T
t=1 1(Xt ≤ y).

The factors Ĉ1 and D̂1 are the approximately mean and variance of
the quadratic form in (3.6). When W (·) is continuous, Q̂1 can be
calculated by numerical integration or simulation.6

Alternatively, we can define the generalized covariance func-
tion as the autocovariance of the generalized residuals
Γ̄j (x, y) = cov


Zt (x, θ) , Zt−|j| (y, θ)


, x, y ∈ Rd,

and estimate it by its sample analogue

̄Γ j (x, y) =
1

T − |j|

T
t=|j|+1

Zt(x, θ̂)Zt−|j|


y, θ̂


, x, y ∈ Rd.

Following similar derivations, we can obtain a new test statistics:

Q̄1 =


T−1
j=1

k2(j/p)(T − j)

×

 ̄Γ 2

j (x, y)dW (x)dW (y)− C̄1


D̄1, (3.8)

where the centering and scaling factors

C̄1 =

T−1
j=1

k2(j/p)(T − j)−1
T

t=j+1


P(x|It−1, θ̂)

×


1 − P(x|It−1, θ̂)


dW (x)


Z2
t−j(y, θ̂)dW (y),

D̄1 = 2
T−2
j=1

k4(j/p)

 
T−1

T
t=1


P(x ∧ y|It−1, θ̂)

− P(x|It−1, θ̂)P(y|It−1, θ̂)
2

dW (x)dW (y)

2

,

where x ∧ y ≡ min(x, y). We note that Q̄1 is computationally
simpler than Q̂1. In particular, the integration for D̄1 is reduced
from 4d dimensions to 2d dimensions. The key difference between
Q̄1 and Q̂1 is the use of different conditioning variables. We will
further examine the finite sample performance of Q̄1 and Q̂1 in
Section 6.

One could also consider a test based on the supremum norm

Ŝ = sup
−π≤ω≤π

sup
x,y∈Rd

F̂ (ω, x, y)− F̂o (ω, x, y)
 .

This delivers a generalized KS test for dynamic conditional
distribution models. In this paper, we focus on the test based on
(3.6). The test based on Ŝ requires a different treatment and it is
expected to follow a nonstandard asymptotic distribution.

4. Asymptotic theory

To derive the null asymptotic distribution of the test statistics
Q̂1 and Q̄1 and investigate their asymptotic power property, we
impose following regularity conditions.

6 Alternatively, the empirical distribution function also provides a way of choos-
ing a data-dependent weighting function W (x) = P̂(x), where P̂(x) is the em-
pirical CDF of Xt . Then a feasible test statistic is Q̂2 = [

T−1
j=1 k2(j/p)(T − j)T−2T

t=1
T

s=1 Γ̂
2
j (Xt ,Xs) − Ĉ2]/


D̂2 , where the centering and scaling factors are

Ĉ2 =
T−1

j=1 k2(j/p)(T − j)−1T−2T
m=j+1

T
t=1 Z

2
m(Xt , θ̂)

T
s=1 ψ̂

2
m−j(Xs) and D̂2

= 2
T−2

j=1
T−2

l=1 k2(j/p)k2(l/p)T−4T
t1=1

T
t2=1

T
s1=1

T
s2=1{[T − max(j, l)]−1T

m=max(j,l)+1 Zm(Xt1 , θ̂)Zm(Xt2 , θ̂)ψ̂m−j(Xs1 )ψ̂m−l(Xs2 )}
2 . Here, no numerical inte-

gration is needed. Depending on the sample size, the computational cost of Q̂2 may
or may not be higher than that of Q̂1 .
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Assumption A.1. {Xt , t ∈ N} is a d-dimensional strictly stationary
time series process with unknown CDF P0(x|It−1), where It−1 ≡

{Xt−1,Xt−2, . . . ,X1} and d ≥ 1.

Assumption A.2. Let P (x|It−1, θ) be the CDF of Xt given It−1
for a parametric model for Xt . (i) For each θ ∈ 2, each x ∈

Rd, and each t, P (x|It−1, θ) is measurable with respect to It−1;
(ii) for each θ ∈ 2, each x ∈ Rd, and each t, P (x|It−1, θ) is
twice continuously differentiable with respect to θ ∈ 2 with
probability one; (iii) supx∈Rd E[supθ∈2 ∥

∂
∂θ
P (x|It−1, θ) ∥

2
] ≤ C

and supx∈Rd E[supθ∈2 ∥
∂2

∂θ∂θ′ P (x|It−1, θ) ∥] ≤ C .

Assumption A.3. θ̂ is a parameter estimator such that
√
T (θ̂ −

θ∗) = OP(1), where θ∗
≡ p limT→∞ θ̂ and θ∗

= θ0 under H0.

Assumption A.4. For each x ∈ Rd, {Xt , P(x|It−1, θ0),
∂
∂θ
P(x|

It−1, θ0)} is a strictly stationary β-mixing process with themixing
coefficient |β(l)| ≤ Cl−ν for some constant ν > 2.

Assumption A.5. k : R → [−1, 1] is a symmetric function that is
continuous at zero and all points in R except for a finite number
of points, with k(0) = 1 and k(z) ≤ C |z|−b for some b > 1

2 as
z → ∞.

Assumption A.6. W : Rd
→ R+ is a nondecreasing right-continu-

ous function that weighs sets symmetric about the origin equally,
with


Rd dW (x) < ∞ and


Rd ∥x∥4 dW (x) < ∞.

Assumption A.1 imposes some regularity conditions on the
DGP. Both univariate and multivariate time series processes are
covered, and we allow but do not require Xt to be Markov. It
is important to allow the DGP to be non-Markov, because many
popular time series models such as GARCH, ACM and MA models
are not Markov.

Assumption A.2 provides standard regularity conditions on
the conditional CDF P(x|It−1, θ) of Xt . The assumption that the
conditional CDF is twice continuously differentiable with respect
to θ is weaker than the requirement that the conditional para-
metric density be twice continuously differentiable in θ , since
the integration is a smoothing operation. Bai (2003) imposes
similar regularity conditions. We allow P(x|It−1, θ) to depend
on the entire past history It−1, rather than finitely many lags
only. Assumption A.3 requires a

√
T -consistent estimator θ̂ under

H0, which need not be asymptotically most efficient. The quasi-
maximum likelihood estimator can be used. Assumption A.4 is a
regularity condition on the temporal dependence of the process
{Xt , P (x|It−1, θ0) ,

∂
∂θ
P (x|It−1, θ0)}. The β-mixing assumption is

a standard condition for discrete time series analysis. Assump-
tion A.5 is the regularity condition on the kernel function k(·). The
continuity of k(·) at 0 and the unity of k(0) ensure that the bias
of the generalized spectral estimator F̂ (ω, x, y) vanishes to zero
asymptotically as T → ∞. The condition on the tail behavior of
k(·) ensures that higher order lags have asymptotically negligible
impact on the statistical properties of F̂ (ω, x, y). Assumption A.5
covers most commonly used kernels. For kernels with bounded
support, such as the Bartlett and Parzen kernels, we have b = ∞.
For kernels with unbounded support, b is some finite positive real
number. For example, we have b = 2 for the Quadratic-Spectral
kernel. Assumption A.6 imposes mild conditions on the weighting
function W (·). Any CDF with finite fourth moments satisfies As-
sumption A.6. Note thatW (·) can be a step function. This provides
a convenient way to implement our tests, because we can avoid
high dimensional numerical integrations by using a finite number
of grid points for x and y. This is equivalent to using the CDF of a
discrete random vector.

We now state the asymptotic distribution of the GCM test
Q̂1 under H0. The test Q̄1 follows the same asymptotic N(0, 1)
distribution under H0.

Theorem 1. Suppose Assumptions A.1–A.6 hold, and p = cTλ for
1+δ
νδ
< λ < (3+

1
4b−2 )

−1, where 0 < c, δ < ∞. Then Q̂1
d

→N(0, 1)
under H0 as T → ∞.

The asymptotic normality of our GCM test statistic Q̂1 differs
sharply from the nonstandard distribution of the CM test statistic
in the literature. It offers a rather convenient inference procedure.
For example, the asymptotic N(0, 1) critical value at the 5%
significance level is 1.65. The appealing asymptotic normality is
made possible due to our spectral approach. To gain intuition,
we consider the case when the kernel function k(·) has bounded
support, i.e., k(z) = 0 if |z| > 1. Then Q̂1 is a weighted sum

of p random variables


Γ̂ 2
j (x, y)dW (x) dW (y)

p
j=1

, which are

approximately independent under H0 when p → ∞. This statistic
thus converges to N(0, 1) by CLT after appropriate centering and
scaling. Of course, our formal proof does not rely on this simplistic
intuition. Another important feature of Q̂1 that differs from the
classical CM tests is that the use of the estimated generalized
residuals {Zt(x, θ̂)} in place of the unobservable generalized
residuals {Zt (x, θ0)} has no impact on the limiting distribution of
Q̂1. One can proceed as if the true parameter value θ0 were known
and equal to θ̂. Intuitively, the parametric estimator θ̂ converges to
θ0 faster than the nonparametric estimator F̂ (ω, x, y) converges
to F (ω, x, y) as T → ∞. Consequently, the limiting distribution of
Q̂1 is solely determined by F̂ (ω, x, y), and replacing θ0 by θ̂ has
no impact asymptotically. This delivers a convenient procedure,
because any

√
T -consistent estimator can be used. We allow for

weakly dependent data and data dependence has some impact
on the feasible range of the bandwidth p. The condition on the
tail behavior of the kernel function k(·) also has some impact. For
kernelswith bounded support (e.g., the Bartlett and Parzen),λ < 1

3
because b = ∞. For the QS kernel (b = 2), λ < 6

19 . These
conditions are mild.

In practice, one may like to choose p via some data-driven
methods, which can let data determine an appropriate lag
order. One plausible choice of the data-driven bandwidth is the
nonparametric plug-in method proposed by Hong (1999, Theorem
2.2). It minimizes an asymptotic integrated mean squared error
(IMSE) criterion for the estimator F̂ (ω, x, y). Consider some
‘‘pilot’’ generalized spectrum estimators based on a preliminary
bandwidth p̄:

F̄ (ω, x, y) =
1
2π

T−1
j=1−T

(1 − |j| /T )1/2 k̄ (j/p̄) Γ̂j (x, y) e−ijω

and

F̄ (q,0,0) (ω, x, y)

=
1
2π

T−1
j=1−T

(1 − |j| /T )1/2 k̄ (j/p̄) |j|q Γ̂j (x, y) e−ijω,

where k̄(·) is a kernel not necessarily the same as that used in (3.5).
For the kernel k(·), suppose there exists some q ∈ (0,∞) such
that 0 < k(q) ≡ limz→0

1−k(q)
|z|q < ∞. Then we define the plug-in

bandwidth p̂0 as shown in Box I.
The data-driven p̂0 involves the choice of a preliminary

bandwidth p̄, which can be fixed or grow with the sample size
T . If it is fixed, p̂0 still generally grows at rate T 1/(2q+1) under
HA, but ĉ0 does not converge to the optimal tuning constant that
minimizes the IMSE of F̂ (ω, x, y). This is a parametric plug-in
method. Alternatively, following Hong (1999), we can show that
when p̄ grows with T properly, the data-driven bandwidth p̂0
will minimize an asymptotic IMSE of F̂ (ω, x, y). The choice of
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p̂0 = ĉ0T 1/(2q+1),

where

ĉ0 =


2q

k(q)


∞

−∞
k2(z)dz

 π
−π

F̄ (q,0,0) (ω, x, y)2 dωdW (x, y)

Re
 π

−π
F̄ (ω, x,−x) F̄ (ω, y,−y) dωdW (x, y)

1/(2q+1)

=


2q

k(q)


∞

−∞
k2(z)dz

T−1
j=1−T

(T − |j|) k̄2 (j/p̄) |j|2q
 Γ̂j (x, y)

2 dW (x, y)

T−1
j=1−T

(T − |j|) k̄2 (j/p̄) Re

Γ̂j (x,−x) Γ̂j (y,−y) dW (x, y)


1/(2q+1)

Box I.

p̄ is somewhat arbitrary, but we expect that it is of secondary
importance. This is confirmed in our simulation below.

5. Asymptotic power

Our test is derived without assuming a specific alternative to
H0. To get insights into the nature of the alternatives that our test is
able to detect, we now examine the asymptotic power of Q̂1 under
HA.

Theorem 2. Suppose Assumptions A.1–A.6 hold, and p = cTλ for
0 < λ < 1

2 and 0 < c < ∞. Then as T → ∞,

p
1
2

T
Q̂1

p
→

1
√
D

∞
j=1


Γ 2
j (x, y) dW (x) dW (y)

=
π

2
√
D

 π

−π

[F (ω, x, y)

− F0 (ω, x, y)]2dωdW (x) dW (y),

where

D = 2


∞

0
k4(z)dz

 Γ̃0 (x1, x2)
2 dW (x1) dW (x2)

×

∞
j=−∞

 Ωj (y1, y2)
2 dW (y1) dW (y2) ,

and Γ̃0 (x, y) = cov

Zt

x, θ∗


, Zt


y, θ∗


and Ωj (x, y) = cov

1 (Xt ≤ x) , 1

Xt−|j| ≤ y


.

The functionΩj (x, y) can be viewed as the indicator function-
based autocovariance function of {Xt}. It captures temporal
dependence in {Xt}. The dependence of the constant D onΩj (x, y)
is due to the fact that the conditioning variable 1


Xt−|j| ≤ y


is a

time series process.
Following Stinchcombe and White (1998), we have that for j >

0,Γj(x, y) = 0 for all x, y ∈ Rd if and only if E

Zt(x, θ∗)|Xt−j


= 0

a.s. for all x ∈ Rd. Suppose E

Zt(x, θ∗)|Xt−j


≠ 0 at some lag j > 0

under HA. Then we have
 Γj (x, y)

2 dW (x) dW (y) ≥ C > 0
for any weighting function W (·) that is positive, monotonically
increasing and continuous, with unbounded support on R. As a
result, P[Q̂1 > C(T )] → 1 for any sequence of constants {C(T ) =

o(T/p1/2)}. Thus Q̂1 has asymptotic unit power at any given
significance level α ∈ (0, 1), whenever E


Zt(x, θ∗)|Xt−j


is

nonzero at some lag j > 0 underHA. Note that for aMarkov process
Xt , we always have E


Zt

x, θ∗


|Xt−j


≠ 0 at least for some j > 0

under HA. Hence, Q̂1 is consistent against HA when Xt is Markov.

For a non-Markovian processXt , the hypothesis that E[Zt(x, θ0)

|Xt−j] = 0 a.s. for all x ∈ Rd and some θ0 ∈ 2 and all j > 0 is
not equivalent to the hypothesis that E [Zt(x, θ0)|It−1] = 0 a.s. for
all x ∈ Rd and some θ0 ∈ 2. The latter implies the former but
not vice versa. This is the price we have to pay for dealing with
the difficulty of the increasing information set.7 Nevertheless, our
GCM test is expected to have power against a wide range of non-
Markovian processes, since we check many lag orders. The use of a
large number of lags might cause the loss of power, due to the loss
of a large number of degree of freedom. Fortunately, such power
loss is substantially alleviated for Q̂1, thanks to the downward
weighting by k2(·) for higher order lags. Generally speaking, Xt is
more affected by the recent events than the remote past events.
In such scenarios, equal weighting to each lag is not expected to
be powerful. Instead, downward weighting is expected to enhance
better power because it discounts remote past information. Thus,
we expect that the power of our test is not so sensitive to the choice
of the lag order. This is confirmed by our simulation study below.
The asymptotic property of Q̄1 can be derived in a similar manner.

When a conditional distribution model is rejected by the GCM
test Q̂1, say, it would be interesting to explore possible sources of
the rejection. For example, one may like to know whether mis-
specification comes from the conditional mean, conditional vari-
ance, conditional skewness or conditional kurtosis. In economic
and financial applications, for example, the first four conditional
moments are closely related to the return, volatility, asymmetry
and fat-tail, respectively. Such information, if any, will be valuable
in reconstructing the model and studying different aspects of the
dynamics of economic and financial time series. To gauge possible
sources of model misspecification, we can construct a sequence of
tests by integrating the generalized model residual Zt (x, θ):

7 To reduce the gap between E[Zt (x, θ0)|It−1] = 0 for all x ∈ Rd and E[Zt
(x, θ0)|Xt−j] = 0 for all x ∈ Rd and all j ≠ 0, we can extend F(ω, x, y) to a
generalized bispectrum

B (ω1, ω2, x, y, z) =
1

(2π)2

∞
j=−∞

∞
l=−∞

Cj,l (x, y, z) e−ijω1−ilω2 ,

where

Cj,l (x, y, z) = Zt (x, θ)

1

Xt−|j| ≤ y


− P̂(y)


×


1

Xt−|l| ≤ z


− P̂ (z)


, ω1, ω2 ∈ [−π, π ] , x, y, z ∈ Rd,

is a generalized third order central cumulant function. This is equivalent to the
use of E[Zt (x, θ0)|Xt−j,Xt−l]. With Cj,l (x, y, z), we can detect a larger class of
alternatives to E[Zt (x, θ0)|It−1] = 0. Note that the nonparametric generalized
bispectrum approach can check many pairs of lags (j, l), while still avoiding the
‘‘curse of dimensionality’’. Nevertheless, in this paper, we focus on Γj(x, y) for
simplicity.
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Γ m
j (y) = cov


R|m|


mc ≠0

mcxmc−1
c Zt (x, θ) dx, 1


Xt−|j| ≤ y



= −cov


mc ≠0

Xmc
ct − Eθ


mc ≠0

Xmc
ct |It−1


,

1

Xt−|j| ≤ y

 
,

where m = (m1,m2, . . . ,md)
′,mc ≥ 0 for all 1 ≤ c ≤ d and

|m| =
d

c=1 mc . For the univariate time series (i.e., d = 1), the
choices ofm = 1, 2, 3, 4 corresponds to tests formisspecifications
in the first four conditional moments respectively. For eachm, the
resulting test statistic is given by:

Q̂m
1 =


T−1
j=1

k2(j/p)(T − j)

Γ̂ m
j (y)

2dW (y)− Ĉm
1


D̂m
1 , (5.1)

where the centering and scaling factors

Ĉm
1 =

T−1
j=1

k2(j/p) (T − j)−1
T

t=j+1

Zm
t (θ̂)

2

ψ̂2

t−j(y)dW (y),

D̂m
1 = 2

T−2
j=1

T−2
l=1

k2(j/p)k2(l/p)

×

 
[T − max(j, l)]−1

T
t=max(j,l)+1

× Zm
t (θ̂)

2ψ̂t−j(y1)ψ̂t−l(y2)

2

dW (y1) dW (y2),

with

Zm
t (θ̂) = −


mc ≠0

Xmc
ct − E

θ̂


mc ≠0

Xmc
ct |It−1


.

This set of diagnostic tests is similar to the moment-based
tests used in Brooks et al. (2005) and Harvey and Siddique (1999).
Compared with those conditional moment tests, our tests have
several advantages: first, our GCM test Q̂1 essentially checks every
moment, which is not obtainable by their Chi-square test; second,
because we employ a frequency domain approach, we check a
growingnumber of lags as the sample size increases,while theyuse
an arbitrary and fixed lag order; third, our GCM test and diagnostic
procedures are derived in a unified framework.

6. Finite sample performance

It is unclear howwell the asymptotic theory canprovide reliable
reference and guidance in finite samples when applied to actual
economic and financial time series data, which usually display
conditional heteroskedasticity and serial dependence in higher
moments. We now investigate the finite sample performance
of the proposed tests for the adequacy of some conditional
distribution models. For simplicity, we focus on two GCM tests Q̂1
and Q̄1 in both univariate and bivariate contexts.

6.1. Univariate models

6.1.1. Simulation design
To examine the size of our tests under H0, we consider the

following DGP:DGP0 [MA(1)-GARCH(1, 1)-N(0, 1)]:
Xt = ut + 0.5ut−1,

ut = h
1
2
t εt ,

ht = 0.05 + 0.15u2
t−1 + 0.8ht−1,

{εt} ∼ i.i.d. N(0, 1).

(6.1)

The MA(1)-GARCH(1, 1) model is commonly used in empirical
finance. We simulate 1000 data sets of a random sample {Xt}

T
t=1

for T = 100, 250, 500, 1000 respectively. For each iteration, we
first generate T + 500 observations and then discard the first 500
to reduce the impact of initial values. Under DGP0, the conditional
distribution of Xt given It−1 is normal with mean 0.5ut−1 and
variance ht . For each data set, we estimate the model parameters
via MLE and then compute our statistics.

To investigate the power of our test, we consider the following
DGPs:
DGP1 [ARMA(1, 1)-GARCH(1, 1)-N(0, 1)]:

Xt = 0.3Xt−1 + ut + 0.5ut−1,

ut = h
1
2
t εt ,

ht = 0.05 + 0.15u2
t−1 + 0.8ht−1,

where εt ∼ i.i.d. N(0, 1).

(6.2)

DGP2 [MA(1)-EGARCH(1, 1)-N(0, 1)]:

Xt = ut + 0.5ut−1

ut = h
1
2
t εt

ln ht = 0.05 + 0.8 ln ht−1 + 0.15


|εt−1| −
2

√
π


− 0.8εt−1,

where εt ∼ i.i.d. N(0, 1).

(6.3)

In DGP3-6 below, the individual mean and variance are of the
same forms as those in DGP0.DGP3 [MA(1)-GARCHK-t]:

εt ∼


νt − 2
νt

t (νt) ,

kt = 5.041 +
0.412u4

t−1

h2
t−1

+ 0.171kt−1,

νt =
2 (2kt − 3)

kt − 3
.

(6.4)

DGP4 [MA(1)-GARCH(1, 1)-χ2(5)]:

εt ∼ i.i.d. [χ2(5)− 5]/
√
10. (6.5)

DGP5 [MA(1)-GARCH(1, 1)-t(5)]:

εt ∼ i.i.d.

3/5t(5). (6.6)

DGP6 [MA(1)-GARCH(1, 1)-time varying skewed Student’s t]:
εt ∼ p (ε|νt , λt) ,
νt = −1.2 − 0.4ut−1 − 0.5u2

t−1,

λt = −0.5 − 0.5ut−1 − 0.6u2
t−1.

(6.7)

DGP1 is an ARMA(1, 1)-GARCH(1, 1) process with i.i.d. N(0, 1)
innovations. Under DGP1, model (6.1) is misspecified for the
conditional mean but is correctly specified for the conditional
variance and higher moments. DGP2 is Nelson’s (1991) EGARCH
model with i.i.d. N(0, 1) innovations. Under DGP 2, model (6.1) is
correctly specified for the conditional mean but is misspecified for
the conditional variance because it fails to capture the asymmetric
effects in volatility. DGP3 is Brooks et al.’s (2005) GARCHK model,
which allows the conditional variance and kurtosis to vary over
time separately via the time-varying degrees of freedom. If we
use model (6.1) to fit the data generated from DGP3, the first
three conditional moments are correctly specified, but there exists
dynamic misspecifications in the conditional kurtosis since it
ignores the time-varying conditional fourth moment. Under DGPs
4–6, model (6.1) is correctly specified for both the conditional
mean and the conditional variance, but the distribution of the
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Table 1
Sizes of specification tests under DGP0.

T Lag order 100 250 500 1000
α 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Tests based on the covariance between the generalized residual and its lag term

Q̄1 10 0.063 0.038 0.062 0.040 0.067 0.039 0.058 0.037
20 0.090 0.052 0.093 0.056 0.089 0.062 0.074 0.042
30 0.108 0.060 0.105 0.063 0.102 0.069 0.078 0.043
40 0.105 0.072 0.107 0.063 0.110 0.065 0.076 0.044

Tests based on the covariance between the generalized residual and the lag indicator function

Q̂1 10 0.076 0.043 0.065 0.043 0.078 0.052 0.062 0.037
20 0.061 0.038 0.065 0.037 0.077 0.048 0.070 0.037
30 0.056 0.034 0.068 0.040 0.074 0.045 0.070 0.035
40 0.053 0.029 0.067 0.034 0.068 0.044 0.073 0.034

Notes: (1) DGP0 is: Xt = ut + 0.5ut−1, ut = h1/2
t εt , ht = 0.05 + 0.15X2

t−1 + 0.8ht−1 , where εt ∼ i.i.d. N(0, 1).
(2) Q̂1 and Q̄1 are tests based on the covariance between the generalized residual and the lag indicator function and tests based on the covariance between the generalized
residual and its lag term, given in Eqs. (3.7) and (3.8) respectively.
(3) 1000 iterations.

innovation εt is misspecified. Among them, DGP4 and DGP5
assume that εt is generated from the time-invariant χ2(5) and
t(5) respectively, while DGP6 assumes that εt is generated from
Hansen’s (1994) time-varying skewed Student’s t distribution,
whose degrees of freedom νt and skew parameter λt change over
time.8 As suggested by Hansen (1994), we bound νt between 2.1
and 30, and λt between −0.9 and 0.9 by a logistic transformation.

For each of DGPs 1–6, we generate 500 data sets of the random
sample {Xt}

T
t=1 for T = 250, 500, 1000 and 2500 respectively. For

each iteration, we generate T + 500 observations and then discard
the first 500 to reduce the impact of the choice of some initial
values. For each data set, we estimatemodel (6.1) viaMLE. Because
model (6.1) is misspecified under all six DGPs, our tests Q̂1 and Q̄1
are expected to have nontrivial power under DGPs 1–6, provided
the sample size T is sufficiently large.

6.1.2. Monte Carlo evidence
We choose the N(0, 1) CDF for W (·) and the Bartlett kernel for

k(·), which has bounded support and is computationally efficient.
Our simulation experience suggests that the choices of W (·) and
k(·) have little impact on both size and power of the tests.9
Like Hong (1999), we use a data-driven p̂ via a plug-in method
that minimizes the asymptotic integrated mean squared error of
the generalized spectral density estimator F̂ (ω, x, y), with the
Bartlett kernel k̄(·) used in some preliminary generalized spectral
density estimators. To examine the sensitivity of the choice of the
preliminary bandwidth p̄ on the size and power of the tests, we
consider p̄ in the range of 10–40.

Table 1 reports the rejection rates (in terms of percentage) of
Q̂1 and Q̄1 under DGP0 at the 10% and 5% levels. Both tests have
reasonable sizes for sample sizes as small as T = 100, at both 10%
and 5% levels. Both tests, especially Q̂1, tend to underreject a little
but the underrejection is not excessive. The sizes of Q̂1 and Q̄1 are
not sensitive to the choice of the preliminary lag order p̄.

Table 2 reports the rejection rates of Q̄1 under DGPs 1–6 at the
10% and 5% levels respectively. Under DGP1, model (6.1) ignores
the autoregressive part in the conditional mean dynamics. The Q̄1
test has good power in detecting such a misspecification in the
conditional mean. The rejection rate of Q̄1 increases significantly

8 p(ε|νt , λt ) is a skewed Student’s t distribution, whose PDF is given in (2.2).
9 We have tried the Parzen kernel for k(·), obtaining similar results (not reported

here).

with the sample size T and approaches unity when T = 2500.
Under DGP2, model (6.1) ignores the asymmetric effects in the
conditional variance. The Q̄1 test has excellent power when (6.1) is
used to fit data generated from DGP2. The rejection rate is around
50% at the 5% level when T = 250 and approaches unity when
T = 1000. Under DGP3, model (6.1) is correctly specified for the
conditional mean, conditional variance and conditional skewness,
but is misspecified for the conditional kurtosis. The Q̄1 test has
no power when the sample size T is small but the rejection rate
increases with the sample size. The reason why Q̄1 has worse
power under DGP3 than under DGPs 1 and 2 is that Q̄1 checks
model misspecification in all directions while under DGP3, the
conditional mean, conditional variance and conditional skewness
are all correctly specified. On the other hand, when we examine
the data generated fromDGP3, we find that the degrees of freedom
are all around 5,which enhances the difficulty in distinguishing the
normal innovation with the Student’s t innovation.

Under DGPs 4–6, model (6.1) is correctly specified for the
conditional mean and conditional variance but is misspecified for
the entire distribution. It is well known that when the degrees of
freedom ν are large, the standardized tν or χ2

ν random variable
εt is approximately standard normal. Thus the power of the test
decreases as ν increases. Here we only report the results for ν = 5,
which is close to the empirical findings for high-frequency asset
returns in the literature. The Q̄1 test has better power under DGP4
than under DGP5, with the rejection rates approaching unity when
T = 2500. This is expected because χ2 is a skewed distribution.
We also conjecture that part of the heavy tail generated by the
t or χ2 distribution has been captured by the GARCH model,
which complicates the detection of the misspecification in the
distribution. Under DGP6, εt is generated from a time-varying
skewed Student’s t distribution, and so Q̄1, which is sensitive to
the shape of the distribution, is expected to have better power than
under DGP5. This is indeed confirmed in our simulation, with the
rejection rates approaching unity when T = 2500 under DGP6.

Table 3 reports the rejection rates of Q̂1 under DGPs 1–6 at the
10% and 5% levels respectively. The general patterns are similar to
those of Q̄1, with the rejection rates increasing significantly with
the sample size T . Although Q̂1 has higher rejection rates under
DGPs 1, 3 and 5, the overall performances of Q̄1 and Q̂1 are close to
each other. But in terms of the computational cost, Q̄1 is much less
time-consuming than Q̂1, because a 4d dimensional integration is
reduced to a 2d dimensional integration in calculating Q̄1. We thus
suggest using Q̄1 in practice.
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Table 2
Powers of Q̄1 under DGPs 1–6.

T Lag order 250 500 1000 2500
α 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

DGP1 [ARMA-GARCH-N(0, 1)] 10 0.426 0.330 0.838 0.762 0.994 0.992 1.00 1.00
20 0.356 0.274 0.758 0.690 0.988 0.968 1.00 1.00
30 0.306 0.238 0.686 0.608 0.966 0.936 1.00 1.00
40 0.278 0.218 0.644 0.548 0.942 0.914 1.00 1.0

DGP2 [EGARCH-N(0, 1)] 10 0.812 0.730 0.994 0.986 1.00 1.00 1.00 1.00
20 0.676 0.558 0.978 0.958 1.00 1.00 1.00 1.00
30 0.564 0.452 0.952 0.924 1.00 1.00 1.00 1.00
40 0.480 0.348 0.918 0.882 1.00 1.00 1.00 1.00

DGP3 [MA-GARCHK] 10 0.040 0.030 0.070 0.042 0.142 0.090 0.400 0.294
20 0.046 0.030 0.070 0.038 0.100 0.054 0.260 0.168
30 0.050 0.034 0.066 0.034 0.082 0.044 0.182 0.126
40 0.054 0.036 0.062 0.030 0.070 0.036 0.152 0.092

DGP4 [MA-GARCH-Chi(5)] 10 0.220 0.154 0.416 0.318 0.840 0.780 1.00 1.00
20 0.180 0.126 0.278 0.184 0.670 0.570 1.00 1.00
30 0.150 0.110 0.220 0.140 0.546 0.434 0.996 0.994
40 0.144 0.110 0.186 0.120 0.464 0.344 0.986 0.968

DGP5 [MA-GARCH-t(5)] 10 0.066 0.034 0.096 0.054 0.138 0.074 0.464 0.364
20 0.054 0.032 0.060 0.030 0.078 0.048 0.296 0.210
30 0.054 0.034 0.042 0.068 0.044 0.069 0.204 0.144
40 0.050 0.030 0.040 0.054 0.026 0.065 0.148 0.102

DGP6 [MA-GARCH-time varying t] 10 0.152 0.110 0.322 0.236 0.708 0.616 1.00 1.00
20 0.124 0.080 0.224 0.148 0.548 0.400 0.994 0.980
30 0.108 0.070 0.162 0.106 0.394 0.278 0.958 0.920
40 0.098 0.058 0.134 0.082 0.314 0.214 0.916 0.838

Notes: (1) Q̄1 is based on the covariance between the generalized residual and its lag term, given in Eq. (3.8).
(2) 500 iterations.

Table 3
Powers of Q̂1 under DGPs 1–6.

T Lag order 250 500 1000 2500
α 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

DGP1 [ARMA-GARCH-N(0, 1)] 10 0.636 0.552 0.882 0.836 0.994 0.988 1.00 1.00
20 0.548 0.438 0.806 0.752 0.982 0.980 1.00 1.00
30 0.486 0.390 0.762 0.714 0.978 0.964 1.00 1.00
40 0.444 0.362 0.748 0.672 0.966 0.948 1.00 1.00

DGP2 [EGARCH-N(0, 1)] 10 0.686 0.580 0.940 0.906 0.998 0.998 1.00 1.00
20 0.584 0.488 0.900 0.832 0.996 0.992 1.00 1.00
30 0.512 0.412 0.856 0.784 0.994 0.986 1.00 1.00
40 0.452 0.340 0.820 0.736 0.990 0.978 1.00 1.00

DGP3 [MA-GARCHK] 10 0.108 0.058 0.132 0.098 0.228 0.160 0.444 0.358
20 0.094 0.050 0.103 0.069 0.218 0.136 0.362 0.272
30 0.074 0.044 0.104 0.061 0.188 0.122 0.328 0.238
40 0.066 0.040 0.104 0.059 0.168 0.114 0.304 0.224

DGP4 [MA-GARCH-Chi(5)] 10 0.206 0.136 0.404 0.292 0.746 0.666 0.986 0.984
20 0.160 0.102 0.302 0.212 0.616 0.534 0.974 0.962
30 0.142 0.082 0.258 0.174 0.542 0.438 0.956 0.926
40 0.126 0.068 0.224 0.140 0.482 0.378 0.936 0.874

DGP5 [MA-GARCH-t(5)] 10 0.116 0.072 0.146 0.106 0.250 0.188 0.504 0.402
20 0.096 0.050 0.124 0.074 0.232 0.150 0.426 0.326
30 0.084 0.044 0.108 0.066 0.200 0.138 0.392 0.274
40 0.076 0.038 0.094 0.064 0.180 0.112 0.356 0.268

DGP6 [MA-GARCH-time varying t] 10 0.222 0.150 0.328 0.244 0.694 0.558 0.988 0.972
20 0.182 0.133 0.258 0.176 0.552 0.424 0.964 0.918
30 0.172 0.112 0.240 0.150 0.478 0.336 0.902 0.830
40 0.157 0.083 0.206 0.136 0.438 0.302 0.844 0.778

Notes: (1) Q̂1 is based on the covariance between the generalized residual and the lag indicator function, given in Eq. (3.7).
(2) 500 iterations.

6.2. Bivariate distribution models

6.2.1. Simulation design
To examine the size of our tests for multivariate distributional

models, we consider the following bivariate DGP:DGP B0 [AR(1)-
BGARCH(1, 1)-BN(0, I)]
X1t = 0.3X1t−1 + u1t ,
X2t = 0.2X2t−1 + u2t ,

(6.8)

ut =


u1t
u2t


= H1/2

t εt ,

where Ht =


H11t H12t
H21t H22t


, εt ∼ N


0
0


,

1 0
0 1


, and

H11t = 0.05 + 0.09u2
1t−1 + 0.8H2

11t−1,

H22t = 0.3 + 0.11u2
2t−1 + 0.7H2

22t−1,

ρ =
H12t

√
H11tH22t

=
H21t

√
H11tH22t

= 0.2.
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DGP B0 is a bivariate Gaussian GARCH model with a constant
conditional correlation. The volatilities of two components are not
dynamically related but they are contemporaneously correlated.
Similar to the univariate case,we simulate 1000 data sets of {Xt}

T
t=1

for T = 100, 250, 500 and 1000 respectively. For each data set, we
estimate the model parameters via MLE.

To investigate the power of our tests for multivariate models,
we consider the following DGPs:

DGP B1 [DCC]:
The conditional mean and the dynamics of H11t and H22t are the

same as DGP B0 but with time-varying conditional correlation:

Ht =


H11t 0
0


H22t


Rt


H11t 0
0


H22t


, (6.9)

Qt = 0.1R0 + 0.7(R1/2
t εt−1)(R

1/2
t εt−1)

′
+ 0.2Qt−1,

Rt = diag (Qt)
−1 Qtdiag (Qt)

−1 ,

where R0 =


1 0.2
0.2 1


, diag(·) denotes the diagonals of a matrix.

DGP B2 (Granger causality in mean):
X1t = 0.3X1t−1 + u1t + 0.3X2t−1,
X2t = 0.2X2t−1 + u2t ,

(6.10)

where ut has the same dynamics as that of DGP B0.
DGP B3 (Granger causality in variance): The conditional mean

dynamics has the same forms as DGP B0.
H11t = 0.05 + 0.15u2

1t−1 + 0.8H2
11t−1 + 0.3u2

2t−1,

H22t = 0.5 + 0.2u2
2t−1 + 0.5H2

22t−1 + 0.3u2
1t−1,

H12t = H21t = 0.3

H11tH22t .

(6.11)

DGP B4 (Granger causality in distribution): The conditional mean
and variance have the same forms as DGP B0, with

εlt ∼ p(εl|νlt , λlt), (6.12)

where l = 1, 2 and p(·|·, ·) is Hansen’s (1994) time-varying skewed
Student’s t distribution, whose degrees of freedom νlt and skew
parameter λlt change over time as
λlt = δl1 + δl2u1t−1 + δl3u2t−1 + δl4λ1t−1 + δl5λ2t−1,
νlt = τl1 + τl2u1t−1 + τl3u2t−1 + τl4ν1t−1 + τl5ν2t−1,

where
(δ11, δ12, δ13, δ14, δ15, τ11, τ12, τ13, τ14, τ15)

= (−0.2, 1,−5, 0,−0.9,−0.2, 1,−5, 0,−0.9),
(δ21, δ22, δ23, δ24, δ25, τ21, τ22, τ23, τ24, τ25)

= (−0.2, 0, 1, 0, 0,−0.2, 0, 1, 0, 0).

DGP B1 is Engle’s (2002a, 2002b) DCCmodel. A logistic function
is used to bound conditional correlation ρt between −1 and
1. Under DGP B1, model (6.8) is correctly specified for the
conditional mean and conditional variance but misspecified for
the conditional correlation. Specifically, model (6.8) assumes a
constant conditional correlation, while under DGP B1, there exists
a time-varying conditional correlation. Under DGP B2, there exists
Granger causality in mean from X2t to X1t as the conditional mean
of X1t is determined by both X1t−1 and X2t−1. If we use model
(6.8) to fit data generated from DGP B2, the conditional mean
of X1t is misspecified but the conditional variances and higher
moments are correctly specified. Under DGP B3, the conditional
variances of X1t and X2t are misspecified because they fail to
capture Granger causality in variance from both directions. This
model can be used to characterize volatility spillover between
different financial markets. Under DGP B4, model (6.8) is correctly
specified for the conditional mean and variance but is misspecified
for the distribution of εt as it ignores Granger causality in higher
moments from X2t to X1t .

Similar to the univariate case, for each of DGPs B1–B4, we
generate 500 data sets of the random sample {Xt}

T
t=1 for T =

250, 500 and 1000 respectively. For each data set, we estimate
model (6.8) via MLE and check power performances. For compu-
tational simplicity, we just focus on Q̄1 in bivariate cases.

6.2.2. Monte Carlo evidence
To reduce computational costs, we generate x̂ and ŷ from an

N (0, I2) distribution, with each x̂ and ŷ having 15 grid points in R2

respectively, and let x = (x̂′,−x̂′)′ and y = (ŷ′,−ŷ′)′ to ensure
their symmetry. The choices of k(·), p̂ and p̄ are the same as in the
univariate case.

Table 4 reports the rejection rates of Q̄1 under DGPs B0–B4
at the 10% and 5% significance levels. Model (6.8) is correctly
specified under DGP B0. The Q̄1 test tends to overreject a little
when T = 100, but the overrejection is not excessive and becomes
weaker when the sample size increases. We conjecture that the
overrejection is due to the estimation uncertainty of small samples.
Similar to the univariate case, the size of Q̄1 is not sensitive to the
choice of the preliminary lag order p̄.

UnderDGPB1,model (6.8) ignores the time-varying conditional
correlation. The Q̄1 test has good power in detecting such
misspecification in the conditional correlation. The rejection rate
is around 16% at the 5% level when the sample size T is as small as
100, and increases significantly with the sample size. Under DGP
B2, model (6.8) ignores the Granger causality in mean from X2t
to X1t . The Q̄1 test has excellent power when model (6.8) is used
to fit data generated from DGP B2. The rejection rate is around
25% at the 5% level when T = 100 and approaches unity when
T = 1000. UnderDGPB3,model (6.8) ignores theGranger causality
in variance from both directions. The Q̄1 test has good power
and the rejection rate approaches 85% at the 5% level when T =

1000. Under DGP B4, model (6.8) ignores the Granger causality in
distribution. Sincemisspecification only exists in higher moments,
we conjecture that it may be difficult to be captured. However,
our Q̄1 test has rather good power when model (6.8) is used to
fit the data generated from DGP B4. The rejection rate increases
significantly with the sample size and approaches 80% at the 5%
level when T = 1000.

To sum up, we observe:

• BothGCM tests Q̂1 and Q̄1 have reasonable sizes for sample sizes
as small as T = 100. The sizes of tests are robust to the choice
of a preliminary lag order.

• Both Q̂1 and Q̄1 have good omnibus powers in detecting various
model misspecifications, which demonstrates the nice feature
of the proposed indicator function approach embedded in a
frequency domain framework. Although the powers may vary
with the degree of discrepancy between the null and the
alternativemodels, the power performances are satisfactory for
sample sizes often encountered in finance and economics.

• The finite sample performances of Q̂1 and Q̄1 are close to
each other under various univariate and bivariate alternatives
but the computational costs differ. The test statistic Q̄1 is
computationally more efficient.

7. Conclusion

Conditional distribution models in time series have become in-
creasingly important in studying various applications in economics
and finance, such as macroeconomic control, asset allocation, op-
tion pricing, risk management and hedging. We propose a new
class of GCM tests for dynamic conditional distribution models in
time series, where the conditional information set may depend on
the entire history of the data. Thanks to the use of the empirical dis-
tribution function embedded in a frequency domain framework,
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Table 4
Size and powers of Q̄1 under DGPs B0–B4.

T Lag order 100 250 500 1000
α 0.10 0.05 0.10 0.05 0.10 0.05 0.10 0.05

Size

DGPB0 AR(1)-BGARCH (1, 1)- BN(0,I) 10 0.101 0.068 0.085 0.061 0.088 0.052 0.074 0.038
20 0.136 0.087 0.119 0.077 0.102 0.064 0.083 0.048
30 0.156 0.121 0.127 0.085 0.103 0.070 0.087 0.051
40 0.169 0.128 0.136 0.090 0.112 0.079 0.095 0.055

Powers

DGPB1 (DCC) 10 0.220 0.140 0.442 0.342 0.644 0.554 0.894 0.852
20 0.170 0.118 0.386 0.260 0.558 0.466 0.848 0.810
30 0.146 0.108 0.316 0.236 0.504 0.388 0.812 0.758
40 0.144 0.090 0.300 0.212 0.460 0.356 0.780 0.714

DGPB2 (Granger causality in mean) 10 0.506 0.366 0.930 0.876 0.994 0.992 1.00 1.00
20 0.412 0.250 0.870 0.810 0.978 0.954 1.00 1.00
30 0.314 0.206 0.828 0.774 0.958 0.922 1.00 1.00
40 0.276 0.158 0.798 0.742 0.928 0.876 1.00 1.00

DGPB3 (Granger causality in variance) 10 0.202 0.112 0.652 0.625 0.792 0.778 0.834 0.830
20 0.218 0.126 0.680 0.657 0.820 0.810 0.848 0.844
30 0.220 0.116 0.696 0.677 0.838 0.828 0.860 0.856
40 0.218 0.118 0.712 0.690 0.844 0.836 0.866 0.866

DGPB4 (Granger causality in distribution) 10 0.224 0.130 0.436 0.296 0.720 0.614 0.972 0.930
20 0.174 0.096 0.288 0.190 0.570 0.446 0.902 0.814
30 0.158 0.094 0.234 0.162 0.490 0.344 0.820 0.738
40 0.144 0.076 0.206 0.144 0.424 0.278 0.744 0.656

Notes: (1) Q̄1 is based on the covariance between the generalized residual and its lag term, given in Eq. (3.8).
(2) Results of DGP B0 are based on 1000 iterations; results of DGPs B1–B4 are based on 500 iterations.

both univariate and multivariate conditional distribution models
are covered in a unified framework and our GCM tests can detect
a variety of linear and nonlinear misspecifications. Our frequency
domain approach can check a large number of lags without suffer-
ing severely from the curse of dimensionality, and naturally dis-
count higher order lags. When applied to multivariate conditional
distribution models, our tests can fully exploit the information in
the joint dynamics of variables and thus can capture misspecifica-
tion in modeling joint dynamics, which may be easily missed by
existing procedures. Our tests are applicable to both discrete and
continuous distributions. They are supplemented by a class of diag-
nostic procedures, which are obtained by integrating the CDF and
focus on various specific aspects of the dynamics such as whether
there exist neglected structures in conditional mean, conditional
variance, conditional correlation, conditional skewness and condi-
tional kurtosis respectively. Unlike the traditional CM and KS tests,
which also use the empirical distribution function but have non-
standard distributions, our test statistics all follow a convenient
asymptotic N(0, 1) distribution, and they are applicable to various
estimation methods, including suboptimal but consistent estima-
tors.Moreover, parameter estimationuncertainty has no impact on
the asymptotic distribution of the test statistics. Simulation stud-
ies show that the proposed tests perform reasonably well in finite
samples.
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Appendix. Mathematical appendix

Throughout the appendix, we let Q̃ be defined in the same
way as Q̂1 in (3.7) with the unobservable generalized residual

sample {Zt (x, θ0)}
T
t=1 replacing the estimated generalized residual

sample {Zt(x, θ̂)}Tt=1. Also, C ∈ (1,∞) denotes a generic bounded
constant.

Proof of Theorem 1. The proof of Theorem1 consists of the proofs
of Theorems A.1 and A.2.

Theorem A.1. Under the conditions of Theorem 1, Q̂1 − Q̃
p

→ 0.

Theorem A.2. Under the conditions of Theorem 1, Q̃
d

→N(0, 1).

Proof of Theorem A.1. Put Tj ≡ T −|j|, and let Γ̃j(x, y) be defined
in the same way as Γ̂j(x, y) in (3.3), with Zt(x, θ̂) replaced by
Zt (x, θ0). To show Q̂1 − Q̃

p
→ 0, it suffices to show

D̂
−

1
2

1

 T−1
j=1

k2(j/p)Tj

Γ̂ 2
j (x, y)− Γ̃ 2

j (x, y)


× dW (x) dW (y)
p

→ 0, (A.1)

p−1(Ĉ1 − C̃) = OP(T−
1
2 ), and p−1(D̂1 − D̃) = op(1), where C̃ and

D̃ are defined in the same way as Ĉ1 and D̂1 in (3.7), with Zt(x, θ̂)
replaced by Zt (x, θ0). For space, we focus on the proof of (A.1); the
proofs for p−1(Ĉ1 − C̃) = OP(T−

1
2 ) and p−1(D̂1 − D̃) = op(1)

are straightforward. We note that it is necessary to obtain the
convergence rate OP(pT−

1
2 ) for Ĉ1 − C̃ to ensure that replacing Ĉ1

with C̃ has asymptotically negligible impact given p/T → 0.
To show (A.1), we first decompose T−1

j=1

k2(j/p)Tj

Γ̂ 2
j (x, y)− Γ̃ 2

j (x, y)


× dW (x) dW (y) = Â1 + 2Â2, (A.2)

where

Â1 =

 T−1
j=1

k2(j/p)Tj[Γ̂j(x, y)− Γ̃j(x, y)]2dW (x) dW (y),
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Â2 =

 T−1
j=1

k2(j/p)Tj

Γ̂j(x, y)− Γ̃j(x, y)


× Γ̃j(x, y)dW (x) dW (y).

Then, (A.1) follows from Propositions A.1 and A.2, and p → ∞ as
T → ∞.

Proposition A.1. Under the conditions of Theorem 1, Â1 = OP(1).

Proposition A.2. Under the conditions of Theorem 1, p−
1
2 Â2

p
→ 0.

Proof of Proposition A.1. Put ψt(y) ≡ 1(Xt ≤ y) − ϕ(y) and
ϕ(y) ≡ E[1(Xt ≤ y)]. Then straightforward algebra yields that
for j > 0,

Γ̂j(x, y)− Γ̃j(x, y) = T−1
j

T
t=j+1


Zt(x, θ̂ )− Zt(x, θ0)


ψt−j(y)

+

ϕ(y)− ϕ̂j(y)


T−1
j

×

T
t=j+1


Zt(x, θ̂ )− Zt (x, θ0)


= B̂1j(x, y)+ B̂2j(x, y), say. (A.3)

It follows that Â1 ≤ 2
2

a=1
T−1

j=1 k2(j/p)Tj


B̂2
aj(x, y)dW (x)

dW (y). Proposition A.1 follows from Lemmas A.1 and A.2, and
p/T → 0.

Lemma A.1.
T−1

j=1 k2(j/p)Tj


B̂2
1j(x, y)dW (x) dW (y) = OP(1).

Lemma A.2.
T−1

j=1 k2(j/p)Tj


B̂2
2j(x, y)dW (x) dW (y) = OP(p/T ).

We now show these lemmas. Throughout, we put aT (j) ≡

k2(j/p)T−1
j .

Proof of Lemma A.1. A second order Taylor series expansion
yields

B̂1j (x, y) = −(θ̂ − θ0)
′T−1

j

T
t=j+1

∂

∂θ
P (x|It−1, θ0) ψt−j(y)

−
1
2
(θ̂ − θ0)

′T−1
j

T
t=j+1

∂2

∂θ∂θ′
P

x|It−1, θ̄


×ψt−j(y)(θ̂ − θ0)

= −B̂11j (x, y)− B̂12j(x, y), say, (A.4)

for some θ̄ between θ̂ and θ0.
For the second term in (A.4), we have

T−1
j=1

k2 (j/p) Tj


B̂2
12j (x, y) dW (x) dW (y)

≤ C
√T (θ̂ − θ0)

4  
T−1

T
t=1

sup
x∈Rd

sup
θ∈2

×

 ∂2

∂θ∂θ′
P (x|It−1, θ)


2 T−1

j=1

αT (j)


× dW (x)dW (y) = Op(p/T ),

where we made use of the fact that

T−1
j=1

aT (j) =

T−1
j=1

k2(j/p)T−1
j = O(p/T ), (A.5)

given p = cTλ for λ ∈ (0, 1), as shown in Hong (1999, (A.15),
p. 1213).

For the first term in (A.4), we have
T−1
j=1

k2 (j/p) Tj


B̂2
11j (x, y) dW (x) dW (y)

≤

√T (θ̂ − θ0)

2 T−1
j=1

k2 (j/p)

×

 T−1
j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j (y)


2

dW (x) dW (y)

= Op(1), (A.6)

as is shown below: Put ηj(x, y) ≡ E[
∂
∂θ
P(x|It−1, θ0)ψt−j(y)] =

cov[ ∂
∂θ
P(x|It−1, θ0), ψt−j(y)]. Then we have supx,y∈R2d Σ∞

j=1∥ηj
(x, y)∥ ≤ C by Assumption A.4. Next, expressing the moments
by cumulants via well-known formulas (e.g., Hannan, 1970, (5.1),
p. 23), we can obtain

TjE

T−1
j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j(y)− ηj(x, y)


2

6

Tj
τ=−Tj

cov ∂∂θϕ x,max(0, τ )+ 2|Imax(0,τ )+1, θ0

,

∂

∂θ
ϕ

x,max(0, τ )+ 2 − τ |Imax(0,τ )+1−τ , θ0

′
× |Ωτ (y,−y)| +

Tj
τ=−Tj

ηj+|τ |(x,−y)
 ηj−|τ |(x, y)


+

Tj
τ=−Tj

κj,|τ |,j+|τ |(x, y)


6 C, (A.7)

given Assumption A.4, where κj,l,τ (v) is the fourth order cumulant
of the joint distribution of the process {

∂
∂θ
P(x|It−1, θ0), ψt−j(y), ∂∂θ

P(x|It−1, θ0), ψt−j(y)}. See also (A.7) of Hong (1999, p. 1212).
Consequently, from (A.5), (A.6), |k(·)| ≤ 1, and p/T → 0, we have

T−1
j=1

k2(j/p)E
 T−1

j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j(y)


2

× dW (x)dW (y)

≤ C
T−1
j=1

 ηj(x, y)2 dW (x) dW (y)+ C
T−1
j=1

aT (j)

= Op(1)+ Op(p/T ) = Op(1).

Hence (A.6) is OP(1). The desired result of Lemma A.1 follows from
(A.5) and (A.6). �

Proof of Lemma A.2. We have
T−1
j=1

k2 (j/p) Tj


B̂2
2j (x, y) dW (x) dW (y)

≤

T−1
j=1

k2 (j/p) Tj


[ϕ (y)− ϕ̂j(y)]2T−1

j

×

T
t=j+1


P(x|It−1, θ0)− P


x|It−1, θ̂

2
dW (x) dW (y)

= Op(p/T ), (A.8)
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where we made use of the fact that E
ϕ (y)− ϕ̂j (y)

2 ≤ CT−1
j

given Assumption A.4 and
T

t=j+1


P(x|It−1, θ0)− P


x|It−1, θ̂

2
≤ Tj

θ̂ − θ0

2 T−1
j

T
t=1

sup
x∈Rd

sup
θ∈2

 ∂∂θ P (x|It−1, θ)

2
= OP(1). �

Proof of Proposition A.2. Given the decomposition in (A.3), we
have[Γ̂j(x, y)− Γ̃j(x, y)]Γ̃j(x, y)

 ≤

2
a=1

B̂aj(x, y)
 Γ̃j(x, y)

 ,
where the B̂aj(x, y) are defined in (A.3).

We first consider the term with a = 2. By the Cauchy–Schwarz
inequality, we have
T−1
j=1

k2(j/p)Tj

 B̂2j(x, y)
 Γ̃j(x, y)

 dW (x) dW (y)

≤


T−1
j=1

k2(j/p)Tj


B̂2
2j(x, y)dW (x) dW (y)

 1
2

×


T−1
j=1

k2(j/p)Tj


Γ̃ 2
j (x, y)dW (x) dW (y)

 1
2

= OP(p
1
2 /T

1
2 )OP(p

1
2 ) = OP(p

1
2 ), (A.9)

given Lemma A.2, and p/T → 0, where p−1T−1
j=1 k2(j/p)Tj


Γ̃ 2
j

(x, y)dW (x) dW (y) = OP(1) by Markov’s inequality, the MDS
hypothesis of Zt (x, θ0), and (A.5).

For a = 1, by (A.4) and the triangular inequality, we have
T−1
j=1

k2(j/p)Tj

 B̂1j(x, y)
 Γ̃j(x, y)

 dW (x) dW (y)

≤

T−1
j=1

k2(j/p)Tj

 B̂11j(x, y)
 Γ̃j(x, y)

 dW (x) dW (y)

+

T−1
j=1

k2(j/p)Tj

 B̂12j(x, y)


×
Γ̃j(x, y)

 dW (x) dW (y). (A.10)

For the first term in (A.10), we have
T−1
j=1

k2(j/p)Tj

 B̂11j(x, y)
 Γ̃j(x, y)

 dW (x) dW (y)

≤

θ̂ − θ0

 T−1
j=1

k2(j/p)Tj

 T−1
j

T
t=j+1

∂

∂θ

× P(x|It−1, θ0)ψt−j(y)

 Γ̃j(x, y)
 dW (x) dW (y)

= OP(1 + p/T
1
2 ) = OP(p

1
2 ), (A.11)

given p → ∞, p/T → 0, Assumptions A.2, A.3, A.5, A.6, and
TjEΓ̃ 2

j (x, y) ≤ C . Note that we have made use of the fact that

E

T−1
j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j(y)

 Γ̃j(x, y)


≤

E

T−1
j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j(y)


2
 1

2 
EΓ̃ 2

j (x, y)
 1
2

≤ C
ηj(x, y)+ CT

−
1
2

j


T

−
1
2

j ,

by (A.6), and consequently,θ̂ − θ0

 T−1
j=1

k2(j/p)TjE

×

 T−1
j

T
t=j+1

∂

∂θ
P(x|It−1, θ0)ψt−j(y)


×
Γ̃j(x, y)

 dW (x) dW (y)

≤ C
T−1
j=1

 ηj(x, y) dW (x) dW (y)

+ CT−
1
2

T−1
j=1

k2(j/p) = O(1 + p/T
1
2 ),

given |k(·)| ≤ 1 and Assumption A.6.
For the second term in (A.10), we have

T−1
j=1

k2(j/p)Tj

 B̂12j(x, y)
 Γ̃j(x, y)

 dW (x) dW (y)

≤ CT
θ̂ − θ0

2 T−1
T

t=j+1

sup
x∈Rd

sup
θ∈2

 ∂2

∂θ∂θ′
P (x|It−1, θ)




×

T−1
j=1

k2(j/p)
 Γ̃j(x, y)

 dW (x) dW (y)

= OP(p/T
1
2 ), (A.12)

by Cauchy–Schwarz inequality, Markov inequality, Assump-
tions A.2, A.3, A.5, A.6, and EΓ̃ 2

j (x, y) ≤ CT−1
j .

Hence, we have

T−1
j=1

k2(j/p)Tj


|B̂1j(x, y)| |Γ̃j(x, y)|dW (x)dW (y)

= OP


1 + p/T

1
2


+ OP


p/T

1
2


= OP


p

1
2


. (A.13)

Combining (A.9) and (A.13) then yields the result of this
proposition. �

Proof of Theorem A.2. Let q = p1+
1

4b−2 (ln2 T )
1

2b−1 . We shall show
Propositions A.3 and A.4.

Proposition A.3. Under the conditions of Theorem 1,

p−
1
2

T−1
j=1

k2(j/p)Tj


Γ̃ 2
j (x, y)dW (x) dW (y)

= p−1/2C̃ + p−1/2Ṽ + OP(1),

where Ṽq =
T

t=2q+2


Zt (x, θ0)

q
j=1 aT (j)ψt−j(y)[

t−2q−1
s=1 Zs

(x, θ0) ψs−j(y)]dW (x) dW (y).

Proposition A.4. Under the conditions of Theorem 1, D̃−1/2Ṽq
d

→

N(0, 1).
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Proof of Proposition A.3. We first decompose
T−1
j=1

k2(j/p)Tj


Γ̃ 2
j (x, y)dW (x) dW (y)

=

T−1
j=1

aT (j)
 

T
t=j+1

Zt (x, θ0) ψt−j(y)

2

dW (x) dW (y)

+

T−1
j=1

aT (j)
 

T
t=j+1

Zt (x, θ0)

2 
ϕ (y)− ϕ̂j(y)

2
× dW (x) dW (y)

+ 2
T−1
j=1

αT (j)
 

T
t=j+1

Zt (x, θ0) ψt−j(y)



×


T

t=j+1

Zt (x, θ0)

ϕ(y)− ϕ̂j (y)


dW (x) dW (y)

≡ M̃ + R̃1 + 2R̃2. (A.14)

Next we write

M̃q =

T−1
j=1

aT (j)
 T

t=j+1

Z2
t (x, θ0) ψ

2
t−j(y)dW (x) dW (y)

+ 2
T−1
j=1

aT (j)
 T

t=j+2

t−1
s=j+1

Zt (x, θ0)

× Zs (x, θ0) ψt−j(y)ψs−j(y)dW (x) dW (y)

≡ C̃1 + 2Ũ, (A.15)

where we further decompose

Ũ =

T
t=2q+2


Zt (x, θ0)

t−1
j=1

aT (j)ψt−j(y)

×

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)dW (x) dW (y)

+

T
t=2


Zt (x, θ0)

t−1
j=1

aT (j)ψt−j(y)

×

t−1
s=max(j+1,t−2q)

Zs (x, θ0) ψs−j(y)dW (x) dW (y)

≡ Ũ1 + R̃3, (A.16)

where in the first term Ũ1, we have t − s > 2q so that we can
bound it with the mixing inequality. In the second term R̃3q, we
have 0 < t − s ≤ 2q. Finally, we write

Ũ1 =

T
t=2q+2


Zt (x, θ0)

q
j=1

aT (j)ψt−j(y)

×

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)dW (x) dW (y)

+

T
t=2q+2


Zt (x, θ0)

t−1
j=q+1

aT (j)ψt−j(y)

×

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)dW (x) dW (y)

≡ Ṽq + R̃4, (A.17)

where the first term Ṽq is contributed by the lag orders j from 1 to
q; and the second term R̃4 is contributed by the lag orders j > q. It
follows from (A.14)–(A.17) that
T−1
j=1

k2(j/p)Tj


Γ̃ 2
j (x, y)dW (x) dW (y)

= C̃1 + 2Ṽq + R̃1q − 2(R̃2q − R̃3q − R̃4q).

It suffices to show Lemmas A.3–A.7, which imply p−
1
2 (C̃1 − C̃) =

OP(1) and p−
1
2 R̃a = OP(1) given q = p1+

1
4b−2 (ln2 T )

1
2b−1 and p =

cTλ for 0 < λ < (3 +
1

4b−2 )
−1. �

Lemma A.3. Let C̃1 be defined as in (A.15). Then C̃1−C̃ = OP(p/T
1
2 ).

Lemma A.4. Let R̃1 be defined as in (A.14). Then R̃1 = OP(p/T ).

Lemma A.5. Let R̃2 be defined as in (A.14). Then R̃2 = OP(p/T
1
2 ).

Lemma A.6. Let R̃3 be defined as in (A.16). Then R̃3 = OP(pq/T
1
2 ).

Lemma A.7. Let R̃4 be defined as in (A.17). Then R̃4 = OP(p2b ln T/
q2b−1).

Proof of Lemma A.3. By Markov’s inequality and E
C̃1 − C̃

 ≤

Cp/T 1/2 given
T−1

j=1 (j/p)aT (j) = O(p/T ) and E[ϕ (y) − ϕ̂j(y)]4 =

O

T−2


, which are shown in Hong (1999) and below respectively.

Let t1, . . . , t4 be distinct integers and |j| + 1 ≤ ti ≤ T , let
|j| + 1 ≤ r1 < · · · < r4 ≤ T be the permutation of t1, . . . , t4
in ascending order and let dc be the c-th largest difference among
rl+1 − rl, l = 1, 2, 3.

By Lemma 1 of Yoshihara (1976), we have
|j|+1≤r1<···<r4≤T

r2−r1=d1

E 1(Xr1−j ≤ y)− ϕ(y)
 

1(Xr2−j ≤ y)− ϕ(y)


×

1(Xr3−j ≤ y)− ϕ(y)

 
1(Xr4−j ≤ y)− ϕ(y)


≤

T−3
r1=|j|+1

T−2
r2=r1+maxj≥3(rj−rj−1)

T−1
r3=r2+1

T
r4=r3+1

4C
1

1+δ β
δ

1+δ (r2 − r1)

≤ 4C
1

1+δ

T−3
r1=|j|+1

T−2
r2=r1+1

(r2 − r1)2 β
δ

1+δ (r2 − r1)

≤ 4TC
1

1+δ

T
r=|j|+1

r2β
δ

1+δ (r) = O(T ).

Similarly,
|j|+1≤r1<···<r4≤T

r4−r3=d1

E 1(Xr1−j ≤ y)− ϕ(y)
 

1(Xr2−j ≤ y)− ϕ(y)


×

1(Xr3−j ≤ y)− ϕ(y)

 
1(Xr4−j ≤ y)− ϕ (y)

 = O(T ).

Further, it can be shown in a similar way that
|j|+1≤r1<···<r4≤T

r3−r2=d1

E 1(Xr1−j ≤ y)− ϕ(y)
 

1(Xr2−j ≤ y)− ϕ (y)


×

1(Xr3−j ≤ y)− ϕ(y)

 
1(Xr4−j ≤ y)− ϕ (y)

 = O

T 2 .

Similar to the above, we can show that if rs are not distinct to each
other, we have
|j|+1≤r1,r2,r3≤T
r1,r2,r3 different

E 1(Xr1−j ≤ y)− ϕ(y)
2

×

1(Xr2−j ≤ y)− ϕ (y)

 
1(Xr3−j ≤ y)− ϕ (y)

  = O(T 2),
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and
|j|+1≤r1,r2≤T
r1,r2 different

E 1(Xr1−j ≤ y)− ϕ(y)
2

×

1(Xr2−j ≤ y)− ϕ (y)

2 = O

T 2 .

Therefore, E

ϕ(y)− ϕ̂j(y)

4
= O


T−2


. �

Proof of Lemma A.4.

E|R̃1| ≤

T−1
j=1

aT (j)
 E


T

t=j+1

Zt (x, θ0)

4


1
2

×


E

ϕ (y)− ϕ̂j(y)

4 1
2
dW (x) dW (y) = O(p/T ),

where we have used the fact E
T

t=j+1 Zt (x, θ0)
4

≤ CT 2
j by

Rosenthal’s inequality and E

ϕ (y)− ϕ̂j (y)

4
= O


T−2


. �

Proof of Lemma A.5. By the MDS property of Zt (x, θ0), the
Cauchy–Schwarz inequality, we have

E
R̃2

 ≤ 2
T−1
j=1

aT (j)
 E


T

t=j+1

Zt (x, θ0) ψt−j(y)

2


1
2

×

E


T

t=j+1

Zt (x, θ0)

ϕ(y)− ϕ̂j (y)

2


1
2

× dW (x) dW (y)

≤ 2
T−1
j=1

aT (j)
 

E
T

t=j+1

Z2
t (x, θ0) ψ

2
t−j(y)

 1
2

×

E


T

t=j+1

Zt (x, θ0)

4


1
4

×


E

ϕ(y)− ϕ̂j(y)

4 1
4
dW (x) dW (y)

= O

p/T

1
2


,

given E[ϕ(y)− ϕ̂j (y)]4 = O

T−2


. �

Proof of Lemma A.6. By theMDSproperty of Zt (x, θ0),Minkowski’s
inequality and (A.5), we have

E
R̃3

2 =

T
t=2

E

 t−1
j=1

aT (j)


Zt (x, θ0) ψt−j(y)

×

t−1
s=max(j+1,t−2q)

Zs (x, θ0) ψs−j(y)dW (x) dW (y)


2

6

T
t=2

 t−1
j=1

aT (j)
 E

Zt (x, θ0) ψt−j(y)

×

t−1
s=max(j+1,t−2q)

Zs (x, θ0) ψs−j(y)


2
1/2

dW (x) dW (y)

2

≤ CTq2


T−1
j=1

aT (j)

2

= O(p2q2/T ). �

Proof of Lemma A.7. By the MDS property of Zt (x, θ0) and
Minkowski’s inequality, we have

ER̃2
4 =

T
t=2q+2

E


t−1

j=q+1

aT (j)


Zt (x, θ0) ψt−j(y)

×

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)dW (x) dW (y)

2

6

T
t=2q+2

 t−1
j=q+1

aT (j)
 

E
Zt (x, θ0) ψt−j(y)

41/4

×

E

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)


4
1/4

dW (x) dW (y)


2

6 CT 2


T−1

j=q+1

aT (j)

2

6 CT 2


T−1

j=q+1

(j/p)−2bT−1
j

2

= O(p4b ln2 T/q4b−2),

given Assumption A.5 (i.e., k(z) 6 C |z|−b as z → ∞). �

Proof of Proposition A.4. We rewrite Ṽq =
T

t=2q+2 Vq(t), where

Vq(t) =


Zt (x, θ0)

q
j=1

aT (j)ψt−j(y)Hj,t−2q−1

× (x, y)dW (x) dW (y),

and Hj,t−2q−1(x, y) =
t−2q−1

s=j+1 Zs (x, θ0) ψs−j(y). We apply Brown’s

(1971) martingale limit theorem, which states var(2Ṽq)
−

1
2

2Ṽq
d

→ N(0, 1) if

var(2Ṽq)
−1

T
t=2q+2


2Vq(t)

2 1
×

2Vq(t)
 > η · var(2Ṽq)

1
2


→ 0 ∀ η > 0, (A.18)

var(2Ṽq)
−1

T
t=2q+2

E


2Vq(t)
2

|Ft−1


p

→ 1. (A.19)

First, we compute var(2Ṽq). By theMDSproperty of Zt (x, θ0)under
H0, we have

E(Ṽ 2
q ) =

T
t=2q+2

E


Zt (x, θ0)

q
j=1

aT (j)ψt−j(y)

×

t−2q−1
s=j+1

Zs (x, θ0) ψs−j(y)dW (x)dW (y)

2

=

q
j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s=j+1

E[Zt (x1, θ0) Zt (x2, θ0)
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×ψt−j(y1)ψt−l(y2)]

=

q
j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s=j+1

E[Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)]E[Zs (x1, θ0) Zs (x2, θ0) ψs−j(y1)
×ψs−l(y2)]dW (x1) dW (x2) dW (y1)dW (y2)

+

q
j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s=j+1

cov[Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)Zs (x1, θ0) Zs (x2, θ0)

×ψs−j(y1)ψs−l(y2)]dW (x1) dW (x2) dW (y1)dW (y2)

+ 2
q

j=1

a2T (j)
 T

t=2q+2

t−2q−1
s1=j+1

s1−1
s2=j+1

× E[Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−j(y2)
× Zs1 (x1, θ0) Zs2 (x2, θ0) ψs1−j(y1)ψs2−j(y2)]
× dW (x1) dW (x2) dW (y1)dW (y2)

+ 4
q

j=2

j−1
l=1

aT (j)aT (l)
 T

t=2q+2

t−2q−1
s1=j+1

s1−1
s2=l+1

× E[Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−l(y2)
× Zs1 (x1, θ0) Zs2 (x2, θ0) ψs1−j(y1)ψs2−l(y2)]
× dW (x1) dW (x2) dW (y1)dW (y2)

=
1
2

q
j=1

q
l=1

k2(j/p)k2(l/p)

×

 E Zq,j+l (x1, θ0) Zq,j+l (x2, θ0)

×ψq,l(y1)ψq,j(y2)
2 dW (x1) dW (x2)

× dW (y1)dW (y2) [1 + o(1)] +

T
t=2q+2

V1(t)

+

T
t=2q+2

V2(t)+

T
t=2q+2

V3(t), (A.20)

where the first term is O(p) as shown in (A.25) and the remaining
terms are o(p) following the arguments below

T
t=2q+2

|V1(t)| ≤

q
j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s=j+1

βδ/(1+δ) (t − s)

×


E
Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)
2(1+δ) 1

2(1+δ)

×


E
Zs (x1, θ0) Zs (x2, θ0)

×ψs−j(y1)ψs−l(y2)
2(1+δ) 1

2(1+δ)

× dW (x1) dW (x2) dW (y1)dW (y2)

= O

p2T−1q−νδ/(1+δ)+1 , (A.21)

T
t=2q+2

|V2(t)| ≤ 2
q

j=1

a2T (j)
 T

t=2q+2

t−2q−1
s1=j+1

s1−1
s2=j+1

× E


Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−j(y2)

− E

Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−j(y2)


× Zs1 (x1, θ0) Zs2 (x2, θ0) ψs1−j(y1)ψs2−j(y2)


× dW (x1) dW (x2) dW (y1)dW (y2)

≤ 2
q

j=1

a2T (j)
 T

t=2q+2

t−2q−1
s1=j+1

s1−1
s2=j+1

×βδ/(1+δ) (t − s1)

E |Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−j(y2)
2(1+δ) 1

2(1+δ)

×


E
Zs1 (x1, θ0) Zs2 (x2, θ0) ψs1−j(y1)

×ψs2−j(y2)
2(1+δ) 1

2(1+δ)
dW (x1)

× dW (x2) dW (y1)dW (y2)

= O

pq−νδ/(1+δ)+1 , (A.22)

and
T

t=2q+2

|V3(t)| ≤ 4
q

j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s1=j+1

s1−1
s2=j+1

× E


Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−l(y2)

− E

Zt (x1, θ0) Zt (x2, θ0) ψt−j(y1)ψt−l(y2)


× Zs1 (x1, θ0) Zs2 (x2, θ0) ψs1−j(y1)ψs2−l(y2)


× dW (x1) dW (x2) dW (y1)dW (y2)

≤ 4
q

j=1

q
l=1

aT (j)aT (l)

×

 T
t=2q+2

t−2q−1
s1=j+1

s1−1
s2=j+1

βδ/(1+δ)

× (t − s1)

E |Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)
2(1+δ) 1

2(1+δ)

×


E
Zs1 (x1, θ0) Zs2 (x2, θ0)

×ψs1−j(y1)ψs2−l(y2)
2(1+δ) 1

2(1+δ)

× dW (x1) dW (x2) dW (y1)dW (y2)

= O

p2q−νδ/(1+δ)+1 . (A.23)

Hence,

var(2Ṽq) = 2
q

j=1

q
l=1

k2(j/p)k2(l/p)

×

 
E

Zj+l (x1, θ0) Zj+l (x2, θ0) ψl(y1)ψj(y2)

2
× dW (x1, y1) dW (x2, y2) [1 + o(1)]. (A.24)
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Put C(0, j, l) ≡ E{[Zj+l (x1, θ0) Zj+l(x2, θ0) − Σ0(x1, x2; θ0)]

ψl(y1)ψj(y2)}, where Σj (x1, x2; θ0) ≡ E[Zt(x1, θ0)Zt−j(x2, θ0)].
Then

E

Zj+l (x1, θ0) Zj+l (x2, θ0) ψl(y1)ψj(y2)


= C(0, j, l)+Σ0 (x1, x2; θ0)Ωl−j(y1, y2),
E

Zj+l (x1, θ0) Zj+l (x2, θ0) ψl(y1)ψj(y2)

2
= [C(0, j, l)]2 +


Σ0 (x1, x2; θ0)Ωl−j(y1, y2)

2
+ 2C(0, j, l)Σ0 (x1, x2; θ0)Ωl−j(y1, y2).

Given


∞

j=−∞


∞

l=−∞
|C(0, j, l)| ≤ C and |k(·)| ≤ 1, we have

var(2Ṽq) = 2
q

j=1

q
l=1

k2(j/p)k2(l/p)

×

 
Ωl−j(y1, y2)

2 dW (y1)dW (y2)
×


[Σ0 (x1, x2; θ0)]2

× dW (x1) dW (x2) [1 + o(1)]

= 2p
q−1

m=1−q


p−1

q
j=m+1

k2(j/p)k2[(j − m)/p]



×


[Ωm(y1, y2)]2 dW (y1)dW (y2)

×


[Σ0 (x1, x2; θ0)]2

× dW (x1) dW (x2) [1 + o(1)]

= 2p


∞

0
k4(z)dz

∞
m=−∞


[Ωm(y1, y2)]2

× dW (y1)dW (y2)


[Σ0 (x1, x2; θ0)]2

× dW (x1) dW (x2) [1 + o(1)]

= 4πp


∞

0
k4(z)dz

  π

−π

[F(ω, y1, y2)]2

× dωdW (y1)dW (y2)


|Σ0 (x1, x2; θ0)|
2

× dW (x1) dW (x2) [1 + o(1)], (A.25)

where we used the fact that for any given m, p−1q
j=m+1 k

2(j/p)
k2( j−m

p ) →


∞

0 k4(z)dz as p → ∞.

We now verify condition (A.18). Noting that E

Hj,t−2q−1(x, y)

8
≤ Ct4 for 1 ≤ j ≤ q given the MDS property of Zt (x, θ0) and
Rosenthal’s inequality (cf. Hall and Heyde, 1980, p. 23), we have

E

Vq(t)

4
6


q

j=1

aT (j)
 

E

Zt (x, θ0) ψq,t−j(y)

×Hj,t−2q−1(x, y)
41/4 dW (x)dW (y)4

6 Ct2


q
j=1

aT (j)

4

= O(p4t2/T 4).

It follows that
T

t=2q+2 E

Vq(t)

4
= O


p4/T


= o(p2) given p2/

T → 0. Thus, (A.18) holds.

Next, we verify condition (A.19). Put Σt(x1, x2; θ0) ≡ E[Zt(x1,
θ0)Zt (x2, θ0) |It−1]. Then

E[V 2
q (t)|It−1] =

q
j=1

q
l=1

aT (j)aT (l)

×


Σt (x1, x2; θ0) ψt−j(y1)ψt−l(y2)

×Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)
× dW (x1)dW (x2) dW (y1)dW (y2)

=

q
j=1

q
l=1

aT (j)aT (l)

×


E

Σt (x1, x2; θ0) ψt−j(y1)ψt−l(y2)


×Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)
× dW (x1)dW (x2) dW (y1)dW (y2)

+

q
j=1

q
l=1

aT (j)aT (l)

×


L̃j,lt (x1, x2, y1, y2)

×Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)
× dW (x1)dW (x2) dW (y1)dW (y2)

≡ S1(t)+ V4(t), say, (A.26)

where L̃j,lt (x1, x2, y1, y2) ≡ Σt (x1, x2; θ0) ψt−j(y1)ψt−l(y2)−E[Σt
(x1, x2; θ0)ψt−j(y1)ψt−l(y2)]. We further decompose

S1(t) =

q
j=1

q
l=1

aT (j)aT (l)


E [Σt (x1, x2; θ0)

×ψt−j(y1)ψt−l(y2)

E

Hj,t−2q−1(x1, y1)

×Hl,t−2q−1(x2, y2)

dW (x1)dW (x2)

× dW (y1)dW (y2)+

q
j=1

q
l=1

aT (j)aT (l)

×


E

Σt (x1, x2; θ0) ψt−j(y1)ψt−l(y2)


×

Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)

− E

Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)


× dW (x1)dW (x2) dW (y1)dW (y2)

≡ V0(t)+ S2(t), say, (A.27)

where

V0(t) =

q
j=1

q
l=1

min(t − 2q − 1 − j, t − 2q − 1 − l)aT

× (j)aT (l)


|E [Σt (x1, x2; θ0)

×ψt−j(y1)ψt−l(y2)
2

× dW (x1)dW (x2) dW (y1)dW (y2)
= E


V 2
q (t)


− V1(t)− V2(t)− V3(t),

where Vj(t), j = 1, 2, 3, are defined in (A.20). Put

Lj,ls (x1, x2, y1, y2) ≡ Zs (x1, θ0) Zs (x2, θ0) ψs−j(y1)ψs−l(y2)
− E [Zs (x1, θ0) Zs (x2, θ0)

×ψs−j(y1)ψs−l(y2)

. (A.28)
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Then we write

S2(t) =

q
j=1

q
l=1

aT (j)aT (l)


E [Zt (x1, θ0)

× Zt (x2, θ0) ψt−j(y1)ψt−l(y2)


×

t−2q−1
s=max(j,l)

Lj,ls (x1, x2, y1, y2)

× dW (x1)dW (x2) dW (y1)dW (y2)

+

q
j=1

q
l=1

aT (j)aT (l)


E [Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)
 t−2q−1
s=max(j,l)+1

s−1
τ=l+1

Zs

x1,θ0


×ψs−j(y1)Zτ (x2, θ0) ψτ−l(y2)dW (x1)
× dW (x2) dW (y1)dW (y2)

≡ V5(t)+ S3(t), say, (A.29)

where

S3(t) =

q
j=1

q
l=1

aT (j)aT (l)


E[Zt (x1, θ0)

× Zt (x2, θ0) ψt−j(y1)ψt−l](y2)

×


0<s−τ62q

Zs (x1, θ0) ψs−j(y1)Zτ (x2, θ0)

×ψτ−l(y2)dW (x1)dW (x2) dW (y1)dW (y2)

+

q
j=1

q
l=1

aT (j)aT (l)


E[Zt (x1, θ0)

× Zt (x2, θ0) ψt−j(y1)ψt−l(y2)]

×


s−τ>2q

Zs (x1, θ0) ψs−j(y1)Zτ (x2, θ0)

×ψτ−l(y2)dW (x1)dW (x2) dW (y1)dW (y2)
≡ V6(t)+ V7(t), say. (A.30)

It follows from (A.26)–(A.27) and (A.29)–(A.30) that
T

t=2q+2

{E[V 2
q (t)|It−1]−E[V 2

q (t)]} =
T

t=2q+2[
7

a=4 Va(t)−
3

a=1 Va(t)].
It suffices to show Lemmas A.8–A.11, which imply E|{

T
t=2q+2 E

[V 2
q (t)|It−1] − E[V 2

q (t)]}
2

= o(p2) given q = p1+
1

4b−2 (ln2 T )
1

2b−1

and p = cTλ for 0 < λ < (3 +
1

4b−2 )
−1. Thus, condition (A.19)

holds, and so Q̃q(0, 0)
d

→N(0, 1) by Brown’s (1971) theorem. �

Lemma A.8. Let V4(t) be defined as in (A.26). Then E[
T

t=2q+2 V4

(t)]2 = O(p/q
νδ
1+δ ).

Lemma A.9. Let V5(t) be defined as in (A.29). Then E|[
T

t=2q+2

V5(t)]2 = O(qp4/T ).

Lemma A.10. Let V6(t) be defined as in (A.30). Then E[
T

t=2q+2

V6(t)]2 = O(qp4/T ).

Lemma A.11. Let V7(t) be defined as in (A.30). Then E[
T

t=2q+2

V7(t)]2 = O(p).

Proof of Lemma A.8. Recalling the definition of L̃j,lt (x1, x2, y1, y2)
as in (A.26), we can obtain

E


T

t=2q+2

L̃j,lq,t(x1, x2, y1, y2)Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)

2

≤

T
t=2q+2


E

L̃j,lq,t(x1, x2, y1, y2)

4 1
2

×


E

Hj,t−2q−1(x1, y1)

8 1
4

E

Hl,t−2q−1(x2, y2)

8 1
4

+ 2

t−τ>2q

β
δ

1+δ (2q)

E

L̃j,lq,t(x1, x2, y1, y2)

2(1+δ) 1
2(1+δ)

×


E

L̃j,lq,τ (x1, x2, y1, y2)Hj,t−2q−1(x1, y1)Hl,t−2q−1

× (x2, y2)Hj,τ−2q−1(x1, y1)Hl,τ−2q−1(x2, y2)
2(1+δ) 1

2(1+δ)

+ 2

0<t−τ<2q

E

L̃j,lq,t(x1, x2, y1, y2)L̃

j,l
q,τ (x1, x2, y1, y2)


×


E

Hj,t−2q−1(x1, y1)

4 1
4

E

Hl,t−2q−1(x2, y2)

4 1
4

×


E

Hj,τ−2q−1(x1, y1)

4 1
4

E

Hl,τ−2q−1(x2, y2)

4 1
4

+ 2

0<t−τ<2q

β
δ

1+δ (2q)

E

L̃j,lq,t(x1, x2, y1, y2)

× L̃j,lq,τ (x1, x2, y1, y2)
2(1+δ) 1

2(1+δ)

×


E

Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)

×Hj,τ−2q−1(x1, y1)Hl,τ−2q−1(x2, y2)
2(1+δ) 1

2(1+δ)

= O

T 3

+ O

T 4q−

νδ
1+δ+1


+ O


T 3q


+ O


T 3q−

νδ
1+δ+1


,

where we have made use of the fact that E

Hj,t−2q−1(x1, y1)

8
≤

Ct4 for 1 ≤ j ≤ q. It follows by Minkowski’s inequality and (A.5)
that

E


T

t=2q+2

V4(t)

2

6


q

j=1

q
l=1

aT (j)aT (l)

×

E


T

t=2q+2


L̃j,lq,t(x1, y1, x2, y2)

×Hj,t−2q−1(x1, y1)Hl,t−2q−1(x2, y2)dW (x1)

× dW (x2) dW (y1)dW (y2)

2


1
2


2

= O

qp4/T


. �

Proof of Lemma A.9. Recalling the definition of Lj,lq,s(x1, y1, x2, y2)
in (A.28), we have

E


t−2q−1

s=max(j,l)

Lj,ls (x1, y1, x2, y2)

2

=


|s−τ |≤2q

E

Lj,ls (x1, y1, x2, y2)L

j,l
τ (x1, y1, x2, y2)


+


|s−τ |>2q

β
δ

1+δ (2q)

E

Lj,ls (x1, y1, x2, y2)

2(1+δ) 1
2(1+δ)
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×


E

Lj,lτ (x1, y1, x2, y2)

2(1+δ) 1
2(1+δ)

= O(tq).

It follows that

E


T

t=2q+2

V5(t)

2

6


T

t=2q+2

q
j=1

q
l=1

aT (j)aT (l)

×


{E[Zt (x1, θ0) Zt (x2, θ0)

×ψt−j(y1)ψt−l(y2)]


×

E


t−2q−1

s=max(j,l)

Lj,ls (x1, y1, x2, y2)

2


1
2

× dW (x1)dW (x2) dW (y1)dW (y2)


2

= O

qp4/T


. �

Proof of Lemma A.10. The result that E
T

t=2q+2 V6(t)
2

=

O(qp2/T ) by Minkowski’s inequality and

E [V6(t)]2 6

 q
j=1

q
l=1

aT (j)aT (l)


{E[Zt (x1, θ0)

× Zt (x2, θ0) ψt−j(y1)ψt−l(y2)]


×

 t−2q−1
s=max(j,l)

E


Zs (x1, θ0) ψs−j(y1)

×


s−τ≤2q

Zτ (x2, θ0) ψτ−l(y2)

2


1
2

× dW (x1)dW (x2) dW (y1)dW (y2)


2

6 Ctq


q

j=1

aT (j)

4

= O

tqp4/T 4 . �

Proof of Lemma A.11. The result that E|

T
t=2q+2 V7(t)

2
=

O(Tpq−
νδ
1+δ+1) follows from Minkowski’s inequality, p → ∞, and

the fact that

E| [V7(t)]2 = E


q

j=1

q
l=1

aT (j)aT (l)


E

Zq,j+l (x1, θ0)

× Zq,j+l (x2, θ0) ψq,l(y1)ψq,j(y2)


×

t−2q−1
s=2q+2

Zq,s (x1, θ0) ψq,s−j(y1)

×

s−2q−1
τ=l+1

Zq,τ (x2, θ0) ψq,τ−l(y2)dW (x1)

× dW (x2) dW (y1)dW (y2)

2

=

q
j1=1

q
j2=1

q
l1=1

q
l2=1

aT (j1)aT (j2)aT (l1)aT (l2)

×


R8d

E[Z0 (x11, θ0) Z0 (x21, θ0) ψ−j1

× (y11)ψ−l1(y21)]
× E[Z0 (x12, θ0) Z0 (x22, θ0) ψ−j2(y12)ψ−l2(y22)]

×

t−2q−1
s=2q+2

E [Zs (x11, θ0) Zs (x12, θ0)

×ψs−j1(y11)ψs−j2(y12)


×

s−2q−1
τ=max(l1,l2)+1

E [Zτ (x21, θ0) Zτ (x22, θ0)

×ψτ−l1(y21)ψτ−l2(y22)


× dW (x11)dW (x12) dW (x21)dW (x22)
× dW (y11)dW (y12) dW (y21)dW (y22)

+

q
j1=1

q
j2=1

q
l1=1

q
l2=1

aT (j1)aT (j2)aT (l1)aT (l2)

×


R8d

E[Z0 (x11, θ0) Z0 (x21, θ0)

×ψ−j1(y11)ψ−l1(y21)]E[Z0 (x12, θ0) Z0 (x22, θ0)

×ψ−j2(y12)ψ−l2(y22)]β
δ

1+δ (2q)

× E




t−2q−1
s1=2q+2

t−2q−1
s2=2q+2

Zs1 (x11, θ0) Zs2 (x12, θ0)

×ψs1−j1(y11)ψs2−j2(y12)

2(1+δ)


1
2(1+δ)

× E




s1−2q−1
τ1=2q+2

s2−2q−1
τ2=2q+2

Zτ1 (x21, θ0) Zτ2 (x22, θ0)

×ψτ1−j1(y21)ψτ2−j2(y22)

2(1+δ)


1
2(1+δ)

× dW (x11)dW (x12) dW (x21)dW (x22)
× dW (y11)dW (y12) dW (y21)dW (y22)

= O(t2pT−4)+ O

t3pq−

νδ
1+δ+1T−4


,

given Assumption A.6. �

Proof of Theorem 2. The proof of Theorem2 consists of the proofs
of Theorems A.3 and A.4.

Theorem A.3. Under the conditions of Theorem 2, (p
1
2 /T )(Q̂ −

Q̃ )
p

→ 0.

Theorem A.4. Under the conditions of Theorem 2,

(p
1
2 /T )Q̃

p
→D−

1
2

  π

−π

|F(ω, x, y)− F0(ω, x, y)|2dωdW (x, y).
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Proof of Theorem A.3. It suffices to show that

T−1
 T−1

j=1

k2(j/p)Tj

|Γ̂j(x, y)|2 − |Γ̃j(x, y)|2


dW (x, y)

p
→ 0,

(A.31)

p−1(Ĉ − C̃) = OP(1), and p−1(D̂ − D̃)
p

→ 0, where C̃ and D̃ are
defined in the same way as Ĉ and D̂ in (3.7), with θ0 replaced
by θ̂. Since the proofs for p−1(Ĉ − C̃) = OP(1) and p−1(D̂ − D̃)
p

→ 0 are straightforward, we focus on the proof of (A.31).
From (A.5), the Cauchy–Schwarz inequality, and the fact that
T−1

 T−1
j=1 k2(j/p)Tj[Γ̃j(x, y)]2dW (x, y) = OP(1) as is implied

by Theorem A.4 (the proof of Theorem A.4 does not depend
on Theorem A.3), it suffices to show that T−1Â1

p
→ 0, where

Â1 is defined as in (A.2). Given (A.3), we shall show that
T−1

 T−1
j=1 k2(j/p)Tj[B̂aj(x, y)]2 dW (x, y)

p
→ 0, a = 1, 2. We

first consider a = 1. By the Cauchy–Schwarz inequality and
|ψt−j(y)| ≤ 2, we have

B̂1j(x, y)2 ≤ CT−1
j

T
t=j+1


G(x|It−1, θ0)− G


x|It−1, θ̂

2
≤ CT−1

j T
θ̂ − θ0

2 T−1

×

T
t=1

sup
x∈RN

 ∂∂θG x|It−1, θ̄
2

= Op

T−1 .

It follows from (A.4) and Assumption A.6 that

T−1
 T−1

j=1

k2(j/p)TjB̂2
1j(x, y)dW (x, y) = OP(p/T ).

The proof for a = 2 is similar. This completes the proof for
Theorem A.3. �

Proof of Theorem A.4. The proof is similar to Hong (1999, Proof
of Theorem 5), for the case (m, l) = (0, 0). The consistency result
follows from (a) p−1T

j=1 k
4 (j/p) →


∞

0 k4 (j/p); (b)
  π

−π

|F̂ (ω, x, y) − F (ω, x, y) |2dωdW (x, y) → 0; (c) Ĉ = Op(p); (d)
D̂→

p D. Part (a) follows from Assumption A.5. The proof of (c) and
(d) is straightforward by Markov’s inequality. We will focus on the
proof of (b). Define the pseudoestimator

F̃ (ω, x, y) =
1
2π

T−1
j=1−T

(1 − |j| /T )1/2 k(j/p)Γ̃j(x, y)e−ijω.

By the Cr inequality,

1
4
E
  π

−π

F̂ (ω, x, y)− F (ω, x, y)
2 dωdW (x, y)

≤ E
  π

−π

|F̃ (ω, x, y)− EF̃ (ω, x, y) |2dωdW (x, y)

+

  π

−π

|EF̃ (ω, x, y)− F (ω, x, y) |2dωdW (x, y)

+ E
  π

−π

|F̂ (ω, x, y)− F̃ (ω, x, y) |2dωdW (x, y). (A.32)

For the first term,

E
  π

−π

|F̃ (ω, x, y)− EF̃ (ω, x, y) |2dωdW (x, y)

≤ C(p/T )p−1

|j|<T

k2 (j/p) = O(p/T ). (A.33)

For the second term,  π

−π

|EF̃ (ω, x, y)− F (ω, x, y) |2dωdW (x, y)

=


|j|<T


(1 − |j| /T )1/2 k (j/p)− 1

2
×

 Γj(x, y)
2 dW (x, y)

+


|j|>T

 Γj(x, y)
2 dW (x, y)

= o(1). (A.34)

For the last term,

E
  π

−π

|F̂ (ω, x, y)− F̃ (ω, x, y) |2dωdW (x, y)

≤ Cp/T 2


p−1


|j|<T

(1 − |j| /T )−1 k2 (j/p)


= O


p/T 2 . (A.35)

Part (b) follows from combining (A.32)–(A.35). �
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